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Material derivatives of higher dimension in geophysical fluid 

dynamics and in electrodynamics of fluids1 
 

H. G. FORTAK, Berlin 
 
 
Summary. The familiar operator in fluid dynamics  defines the material derivative for a fluid 
particle with dimension zero. In this paper we define and use “macroscopic” or multidimensional material 
derivatives , , and . They are the material derivatives of infinitesimal properties of 
the fluid having dimensions, i. e. when particles build a line, a surface area, or a volume. Simple rules 
between the three operators are presented that avoid complicated calculations in fluid dynamics. For 
example, these operators are invariant with respect to solid rotations of coordinate systems. We rewrite a 
number of equations of fluid dynamics in terms of these operators and show that simple identities 
involving these operators already contain the structure of known vorticity theorems, especially those 
given by Hans ERTEL. One application deals with the circulation of eddy velocities in atmospheric 
turbulence, showing that this circulation may be an almost material invariant with time. Further possible 
applications (e.g., in electrodynamics and in radiation hydrodynamics) are also suggested.  
 
 
Zusammenfassung. Die übliche materielle zeitliche Ableitung in der Hydrodynamik ist für eine 
Flüssigkeitspartikel definiert, die keine Dimension besitzt. In dieser Arbeit werden zusätzlich 
„makroskopische“ materielle Ableitungen , , und  definiert und verwendet. Es 
handelt sich hierbei um materielle zeitliche Ableitungen von infinitesimalen Eigenschaften im Fluid, die 
Dimensionen besitzen, etwa solchen, die an materielle Linien, materielle Flächen oder an materielle 
Volumina gebunden sind. Zwischen den drei Operatoren bestehen einfache Beziehungen, welche helfen, 
viele komplizierte Rechnungen der Hydrodynamik zu umgehen. Besonders wichtig für das praktische 
Rechnen ist die Tatsache, dass diese Operatoren invariant gegenüber starren Rotationen von 
Koordinatensystemen sind. Eine Reihe wichtiger Gleichungen der Hydrodynamik lassen sich vorteilhaft 
unter Verwendung dieser Operatoren darstellen. Es wird gezeigt, dass einfache, mit Hilfe dieser 
Operatoren gebildete Identitäten bereits die Struktur bekannter Wirbelsätze, speziell diejenigen die Hans 
ERTEL angab, beschreiben. Eine Anwendung betrifft die Zirkulation der turbulenten Zusatzkomponenten 
der Strömung. Hier wird gezeigt, dass unter bestimmten Bedingungen diese Zirkulation materiell fast 
invariant sein kann. Weitere mögliche Anwendungen finden sich in der Dynamik und Energetik der 
elektromagnetischen Felder innerhalb eines Fluids sowie in der Strahlungshydrodynamik.  
 

1. Introduction  
 
Consider a material line element , an element of a material surface area , an element of a material 
volume , and an extensive local property  (a vector or dyadic) attached to each particle of these 
material elements of the fluid. “Macroscopic” properties of the fluid are: the line integral extended over a 
material line , the integral over a surface area (open surface) , and over a volume : 
 

. 

These are “macroscopic” material structures of the fluid. They contain the same particles all the time. 
When the fluid moves, they depend on time. In this case, not only the variable  changes with time but 
the shapes of , , and  change too. 

                                                
1 In memory of Hans Ertel, the author´s teacher (1948-1951), his director (1951-1957), and his paternal friend thereafter. 
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An observer, moving with such a material structure, observes a rate of change with time  of it. At 
this stage of development, we remark that the derivative  applied to integrals emphasizes that we 
are following the motion of a “macroscopic” material structure. Therefore, in the following notation the 
operator  in front of integrals may not be identified with the common material derivative with time, 
i. e. with , the material change with time of a “particle”. It gets this meaning if we 
differentiate the integrands. 
 We know the following formulae at least from the end of the 19th century, see (MADELUNG, 
1950), (FORTAK, 1956a, 1956b, 1960, 1967, 1993), (ARIS, 1962), and (KUNDU, 1990): 
 

,                 (1.1) 

 

,   (1.2) 

 

.                   (1.3) 

 
 In contrast to the common zero dimensional material derivative, equations (1.1 to 1.3) define 
multi- dimensional material derivatives , , and  according to  
 

,     , 

. 

 
 denotes the length of the material line ,  the area of the material surface , and  the 

volume of the material volume . A proof of equations (1.1) to (1.3.) is given in Appendix 1. 
 These equations show how in material space of fluid dynamics the material derivative of a 
material integral may be interchanged with the integral itself. They correspond to what can be called 
“commutator” relationships. This is a very valuable property of the three introduced operators. 
 There are three important and extremely advantageous relationships, that can be verified quite 
easily: 

.                (1.4) 

 
A proof of (1.4) will be given in Appendix 2. 
 The equation of continuity allows a transformation of the operator  into  and vice 
versa. To start with, we write (  is specific volume): 

. 

Consequently, 

                                                                   (1.5) 
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.                           (1.6) 
 
 These formulae help to avoid almost completely tedious calculations in fluid dynamics. They 
serve to formulate integral versions of hydrodynamic principles, and allow deriving many types of 
conservation principles. This is another useful property of the three introduced operators. By including 
the familiar total time derivative into the present formalism, one could rename  by  (not done 
here, but see (FORTAK, 1956). Equations (1.1 to 1.6) are the foundation for all calculations that will 
follow. 
 
 

2. Transformation of the “macroscopic” material derivatives 
 
As an important first example for the advantageous properties of the three operators, we mention their 
invariance with respect to solid rotation of coordinate systems.  
 Let be  a scalar, and as before,  a vector or tensor. The index “a” indicates that a property is 
taken in an inertial (“absolute”) system. A missing index “a” indicates the system fixed at the earth 
(relative system). The vector of the angular velocity of the earth rotation is . From the theorem of 
Coriolis the following equations should be used for transformation: 
 

.             (2.1) 
 
Here R is the position vector,  the velocity vector in the inertial system,  the one in the relative 
system, and  is the velocity vector of solid rotation. 
 The kinematics of  is given as follows. The position vector is R, the unit dyadic is I, with: 

. Therefore:  
 

.                       (2.2) 

 
Important is that the dyadic  is antisymmetric. The transformation in (2.1) now writes as: 
 

.                                                           (2.3) 
 
Applying equations (2.2), the transformation of the “macroscopic” material derivatives now is given by: 
 

 
 

 
 

 
 

 
 
 This important result states that the “macroscopic” material derivatives are invariant with regard to 
solid rotations of the system of coordinates. It should be noted that invariance of this kind holds in the 
third equation only, if the vector or tensor is replaced by a scalar. It will be seen that invariance of the 
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three operators with regard to solid rotations of the coordinate system simplifies the derivation of vorticity 
equations and that of other equations in geophysical fluid dynamics enormously.  
 
 

3. Fundamental equations of fluid dynamics rewritten 
 
In an absolute frame of reference the Eulerian equations of motion are given as: 
 

. 
 

The symbols have the usual meaning (  stands for the attraction potential F for the friction tensor, h is 
specific enthalpy, s is specific entropy). Consistently with the formulae above we write: 
 

.    (3.1) 

 
 This is a first physical equation in . Integration over a material line, with (1.1), the 
corresponding circulation theorem is obtained. 
 Applying the operation  on (3.1), equation (1.4) immediately leads to the equation for absolute 
vorticity  

.                                                             (3.2) 
 
 In addition, two physical equations in  are obtained from (3.1) as follows (e.g. FORTAK, 
1993). The first equation is appropriate to barotropic flow (superscript bt), the second one to adiabatic 
flow (superscript bk). We begin with 

. 

 We introduce LAGRANGE´s function  and HAMILTON´s action function  according to: 
 

.            (3.3) 

Then, equation (3.1), the Eulerian equation of motion, in full generality writes as:  
 

.                                           (3.4) 
 
 The associated vorticity equation is obtained at once by applying (1.4): 
 

.                            (3.4a) 
 
Here  is the solenoid vector. If the fluid is ideal and barotropic, we have conservation principles: 
 

,        .                                          (3.5, 3.5a) 
 
 The second possibility (superscript bk for baroclinic) in writing the right-hand side of the equation 
of motion is given by 
 

.                                           (3.6) 
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 First, we replace temperature by the function b   (HELMHOLTZ, 1895). This useful function is a 
Lagrange multiplier of a general variational principle (SERRIN, 1959):  
 

.                                                           (3.7) 

We further introduce LAGRANGE´s function  and HAMILTON´s action function : 
 

.               (3.8) 

Observing that 

, 

we write equation (3.1) as 

.                                          (3.9) 
 
 The associated vorticity equation again is obtained by applying (1.4): 
 

.                                      (3.9a) 
 
 If the fluid is ideal (i.e., without friction) and the motion is adiabatic, we have conservation 
principles: 

,        .                     (3.10, 3.10a) 
 
 Equations (3.4), (3.9) are related to transformations of WEBER (1868)) and of CLEBSCH (1857, 
1859) (see e.g., SERRIN, 1959). We will shortly trace this purely theoretical subject in Appendix 1 
because this was part of ERTEL´s scientific interests (ERTEL, 124)2.  
 We continue and summarize: Fluid dynamics is governed basically by two versions of the 
equations of motion. In abbreviated version, this is  
 

.                                         (3.11) 

Here, we can use 
,                             (3.12) 

 

.                 (3.13) 

For ideal fluids,  if the flow is barotropic,  if the flow is adiabatic. 
 There seems not to be a second -equation, in addition to the vorticity equations, does not 
seem to exist in fluid dynamics. But there are -equations. The equation of continuity is one 
example. The entropy equation is another one. Applying (1.6) from: 

 

, 

we have 

                                                
2 The bold numbers attached to Ertel´s papers refer to the Dr. Gertrud Kobe list of Ertel´s publications. In this volume. 
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.                                (3.14) 

 
Here,  is the molecular heat flux vector and  the corresponding entropy flux vector (radiation 
forcing is neglected here which does not touch the present argument). The right-hand side of (3.14) is 
entropy production  (= 0 for reversible processes, > 0 for irreversible ones). The equation for total 
energy e (kinetic, potential, and internal energies) is written as 
 

.                                             (3.15) 
 
 

4. Identities and general vorticity theorems 
 
The lasting value of ERTEL´s work is that he derived a number of general vorticity theorems for the first 
time. Ertel´s theorems became re-derived many times; sometimes applying complicated mathematics (see 
SCHRÖDER et al., 1993). In this paper, we refer back to some of ERTEL´s papers in this field. Most of 
them are available in English translation enclosed in this volume of the journal (SCHUBERT et al., 2004).  
 We will show that there is one common origin for (almost) all of them, and, additionally, that in 
fact they are based on one identity that is written in terms of the introduced “macroscopic” operators. 
 If we use a vector  and an arbitrary dyadic or tensor  (covariant on his left side in connection 
with , and cotravariant in connection with ), we can define useful identities. Let be  a 
dyadic product, then: 
 

 

 

                                                       (4.1) 
 
If we use as physical input equations (3.12), and (3.13), we get two vorticity theorems for the dyadic . 
 If the dyadic product  is replaced by  with a scalar function , it follows that:  
 

,      (4.2) 

 
are two generalizations of a result in (ERTEL, 96). Integration over open or closed surfaces, and applying 
(1.2) leads to circulation principles depending on the special circumstances involved. These are simple for 
cases in which  is materially invariant and if the flow of an ideal fluid is barotropic or adiabatic. 
 Further important identity is given by 
 

, 

 

.                                                       (4.3) 
 

                                                    (4.4) 
 
Introducing the physical input (3.12), (3.13), we obtain:  
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                                       (4.5)  

 

                 (4.6) 

 
 According to (3.5), (3.5a), and (3.10), (3.10a) for barotropic or adiabatic flows of ideal fluids, we 
obtain equations for generalized helicity if we choose  and  
 

.                                           (4.7) 

 
 If specifically, we introduce  into (4.3), together with (1.4), we obtain the identity. 
 

.                                               (4.8) 
 
Again, we introduce the physical input (3.12), (3.13) 
 

,                                  (4.9) 

 

.            (4.10) 

 

The first equation in (4.9) can be rewritten if we observe that . Then:  
 

.                                         (4.11) 
 
Integrating, and applying GAUSS´s theorem, the integral version is: 
m 
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 Ertel´s best-known vorticity theorems are members of the previous equations. ERTEL always 
considers an ideal fluid, so the right-hand side of the second member of (4.5) as well as the one of (4.9) is 

. Then, the theorem from the year 1955 (ERTEL, 132, 133) can be written as:  
 

.                                          (4.12) 
 
The famous theorem from the year 1942 (Ertel 92, 93, 95, 96) is 
 

.                                       (4.13) 
 
 If , and if the motion is adiabatic, then ERTEL´s potential vorticity  is a 
material invariant: . From (4.9) the same result is obtained. Except for the Eulerian 
equations of motion, this is the only result from geophysical fluid dynamics that is widely used in 
meteorology. The “PV-era” in meteorology started many years after ERTEL´s death. Finally, we point 
out that the second member of equations (4.7) is the ERTEL-ROSSBY theorem (ERTEL et al. 120, 121). 
 Equations (4.2), (4.5)/(4.6), and (4.9)/(4.10), represent a group of general vorticity theorems; they 
have their origins in very simple identities in which the physical input came from the Eulerian equations 
of motion. These entered in a variety of versions depending on the circumstances chosen. All of these can 
now be written in terms of our “macroscopic” material derivatives. The first members of equations (4.5), 
(4.6), (4.7), (4.9), and (4.10) are appropriate for integration over material volumes, leading to 
“macroscopic” conservation principles, the second ones are for exploring more material invariants of the 

 type. 
 With respect to a further important paper of ERTEL (ERTEL, 152, 153), an identity connected 
with generalized helicity is obtained from (4.3) 
 

 
 

.                                             (4.14) 
 
 In order to relate the work of ERTEL to the result (4.14), we introduce curvilinear and time 
dependent MONGE potentials . Then vector  can be represented as:  

.                                                              (4.15) 
 

Now, . The Jacobian J is a generalized helicity. 
If we introduce this into (4.14), we need: 
 

. 

ERTEL´s result (ERTEL, 152, 153) can now be formulated as: 
 

.    (4.16) 

 
In (4.16) the adjoint  of  was introduced (BRAND, 1962): 
 

. 
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Integrating (4.16) over a material volume and applying GAUSS´s theorem we obtain the interesting result 
 

. 

 
 If  is identically with the absolute velocity vector , then  is absolute helicity 
(a scalar) in fluid dynamics. Therefore, equation (4.16) is the helicity equation that depends on the motion 
of the coordinates. 
 If we know (zero-dimensional) material invariants , a number of interesting conclusions 
can be drawn. First, we have:  
 

. 
 
So, we find the divergence of the velocity vector as 
 

.                                                         (4.17) 

 
 Furthermore, we obtain a number of conservation principles from . 
Ertel (197) has shown that the maximum number of independent invariants in fluid dynamics, (i.e., those 
for which ), is equal to the number of dimensions in the reference space. The Lagrangian 
coordinates  are such invariants: . Let be , and using the equation of 
continuity in Lagrangian coordinates, , then  

. 
 
We see that  is a second invariant. For adiabatic motion, entropy s is an invariant ( ). When 
the conditions for which Ertel´s potential vorticity are fulfilled, PV=  is another invariant 
( ). Employing the three collected invariants , s, and ,  
is a combined additional invariant. In (4.7) we got at least two more invariants. For ideal fluids and 
barotropic flows, we had the ERTEL- ROSSBY invariant , and for the same frictionless 
fluid and adiabatic flow, the invariant is . We would be able to 
continue the search for more invariants of that kind. 
 The listed identities, together with the integrated versions, are the basis for a very large number of 
vorticity and circulation theorems. This is true not only in fluid dynamics, but in other branches of 
theoretical physics as well, when motions of continua are involved. Physics enter in these identities if we 
know for a vector  its physical equation , and if additionally we choose an arbitrary 
function (scalar, vector, tensor) for which physical equations like  or  are 
known. Comfortable conditions are those in which  or . The resulting equations constitute 
generalized physical principles. In meteorology, such new principles were formulated first by ERTEL 
(ERTEL, 92, 93, 95, 96, 120, 121, 132, 133). 
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5. Material “conservation” of the circulation of eddy velocities in 
atmospheric turbulence 
 
In one of his early papers (ERTEL, 13), ERTEL showed that under certain conditions the circulation of 
eddy velocities around a closed material contour could be an invariant material property. In his paper, he 
assumed incompressibility, steady state conditions of the mean fields, and a non-rotating coordinate 
system. We will generalize his result, applying the mathematical techniques developed above. 
 The material rate of change with time of the circulation of eddy velocities  is represented by 
 

. 

 

 In accordance with REYNOLDS´s techniques, the velocity is split up as . The hat 
operator denotes density weighted REYNOLDS´s averaging (including the appropriate rules).  
 The equation of motion in momentum version is given by 
 

.                                (5.1) 

Density weighted averaging yields: 
 

.    (5.2) 

Correspondingly, 

                                                           (5.1a) 

 

.                                                (5.2a) 

 

Here  and . 
 Applying the curl operation on (5.1a) and (5.2a) as before, we get the vorticity equations for both, 
the non-averaged and the averaged equations of motion: 
 

                                                               (5.3) 
 

.                                                    (5.4) 
 
 Integrating the vorticity equations (5.3) and (5.4) over a material surface area of the fluid, and 
applying STOKES´s theorem, with (1.2) we get:  
 

,                  (5.5) 

 

.                                       (5.6) 

We now write (5.5) as 
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.   (5.7) 

 
Eq. (1.2) yields for the first term on the right: 
 

.                                                     (5.8) 

 

 The following relationship is valid for any vector or tensor , thus for  with : 
 

, 

and consequently: 

.                                                            (5.9) 
 
 The final result is obtained if (5.4), (5.6), (5.8), and (5.9) are introduced in (5.7): 
 

.       (5.10) 

 
 This equation (5.10) has an important implication. If the material line of integration  is chosen 
such that it coincides with a closed material line of the mean absolute vorticity vector , then the first 
term on the right-hand side vanishes. The question arises whether closed material lines of the mean 
absolute vorticity vector  do exist within the atmosphere (boundary layer theory, jet stream?). 
 If the fluid is frictionless (= ideal) and barotropic, the last term on the right-hand side is written as: 
 

. 
The result reads as: 

.                               (5.11) 

 
 If the material line of integration  is chosen as was discussed in connection with (5.10), then we 
get the result that the left-hand side depends only on the slowly varying mean field of REYNOLDS´ 
stress. This result here may be interpreted as almost material conservation of the circulation of eddy 
velocities in atmospheric turbulence under such conditions. In ERTEL´s paper, the mean field is a steady-
state one. So, he got the result that the circulation in (5.11) is a material invariant with time. This certainly 
was a remarkable result in theory of turbulence obtained by the student Hans ERTEL. 
 Further applications of the formalism developed here are possible in the fields of electrodynamics 
of fluids and in radiation hydrodynamics; they will be considered in a later study.  
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A Appendix 1: Lagrangian fluid dynamics with application in parts 1.,  
and 3.  

 

In Lagrangian fluid dynamics, the initial position vector is . Here, the initial coordinates  
are material invariants, i. e. . The coordinates  of particles at later times define the 
position vector R. The trajectory of a particle with initial position  is given by . 
 We define a covariant vector basis  and a contravariant vector basis  by  
 

          (A.1) 

 

The unit dyadic is I, KRONECKER´s symbol is .  is the deformation tensor and  is the 
reciprocal. Additionally, the summation convention is applied: If in a product two indices are equal, it is 
understood that the sum is taken from 1 to 3. 
 We transform the  - operator from the Eulerian frame to the Lagrangian one and vice versa by 
 

.                              (A.2) 
 
 In Lagrangian fluid dynamics, the material derivative  reads . Then, 

. Instead, we write .  
 First, we differentiate the unit dyadic  
 

.                                   (A.3) 
 

Then with , and , 

.              (A.4) 
 
 In Lagrangian version, a material line element, an element of a surface area, and an element of a 
volume are: 

.                (A.5) 
 

Here, we avoided the use of the permutation symbol  in  by selecting a special surface area 
element on  
 We now use the definitions of the operators  and transform them from 
“Euler to Lagrange”: 

,                          (A.6) 
 

,    (A.7) 
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.                         (A.8) 

 
 These formulae are valid with regard to both inertial and relative frames, and they provide for a 
connection to ERTEL´s work in 200, 209, 260, 124. In inertial frames, we multiply with the da´s 
according to (A.5) and integrate over the corresponding material structures. Observing that now 

, with (A.5) we get the result that the equations (1.1) to (1.3) are valid. In addition, with 
all foregoing results, we find directly  
 

.                  (A.9) 
 
 We summarize: Transforming the operators  into Lagrangian coordinates, 
we have 

,                                  (A.6a) 
 

,      (A.7a) 
 

.                                                        (A.8) 
 
 It was mentioned that these formulae are valid with regard to both inertial and relative frames. In 
inertial frames, we attach the index “a” to all symbols where this is appropriate. For example, it is 

, and equation (A.6a) read as . Due to the invariance of the 
operator  with respect to solid rotations, multiplication of equations (3.4) and (3.9) by  leads to 
the Lagrangian version of these equations (see also ERTEL, 200, 209, 260) 
 

,                                 (A.10) 

 

.                       (A.11) 

 
 These equations are integrated along a single trajectory of a particle that had started at time  
in position  and that reached position  in space at time t. The running time 
then is . First, we consider (A.10) only and integrate 
 

. 

 
 ERTEL, in his paper (ERTEL, 1952 (124)), brilliantly derived an equivalent expression for the 
following relationship (originally for barotropic flow, but actually valid in general) 
 

.                      (A.12) 

 

Here  is total energy per unit mass. Now WEBER´s transformation, in Lagrangian 
form is given by: 
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.        (A.13) 

 

 We return to the Eulerian version of (A.13) by multiplying this equation with . Then, we get 
the equivalent of ClLEBSCH´s transformation as 
 

.              (A.14) 

 
Ertel considered steady-state barotropic flow of ideal fluids. In that steady-state case, total energy is a 
material invariant, . His theorem in (124) then reads: 
 

.                                               (A.15) 
 
The proof of uniqueness of equation (A.15) was given by FORTAK (FORTAK, 1954). 
 The case that is applicable to adiabatic motion with  is given by 
 

.             (A.16) 

Here total energy is . 
 For steady-state adiabatic flows of ideal fluids, we have 
 

.                                       (A.17) 
 
 
B  Appendix 2: Proof of equations (1.4) 
 
Equations (1.4) can be proved directly by vector calculations. We prefer the following method where 
equations (1.1 to 1.3) are used together with the integral theorems of GAUSS and STOKES. Integrating 
the members of (1.4) with respect to a material line, an area, and a volume, we have the equations to be 
proved as 

 

 

. 

 Now we proceed as follows: 
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The following chapter is not part of the publication in 2004 
 
6. Electrodynamics of fluids 
 
We now will introduce the “macroscopic” material derivatives into electromagnetic theory of fluids. 
Here, it is interesting to derive equations for the vector of electromagnetic momentum, and for 
electromagnetic energy. We will see that the equation for the vector of electromagnetic momentum 
corresponds to the equation of motion (3.1) in fluid dynamics. The vorticity equation for electromagnetic 
momentum corresponds to the hydrodynamic one, and the equation for electromagnetic energy 
corresponds to the hydrodynamic equation for internal energy (First law of thermodynamics). 
 We begin with the conventional version of Maxwell´s equations. Originally, they were formulated 
in a resting frame of reference (Laboratory frame). Denoting the variables in this system by index zero, 
then these are: 

.                                    (6.1) 

 
 The notation is as usual:  is the magnetic flux density vector (magnetic induction),  is the 
electric field vector, is the displacement vector, the magnetic field vector,  is the vector of the 
electric current density, and  is charge density.  
  We introduce the vectors of dielectric polarization  and of magnetization  and use 
the well-known relations  and . Here ,  are dielectric constant and 
magnetic permeability of the vacuum respectively. Normally, parametrizations of  in terms of  and 
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of  in terms of  (closing conditions) are used:  and . Here  are 
constants (or even tensors) characterizing the electric and magnetic properties of the material under 
consideration. Putting these equal to one, means that dielectric polarization as well as magnetization are 
neglected, i. e. the equations are valid in the vacuum. At this point, however, we will avoid this 
approximation, and we will write down the system of Maxwell´s equations explicitly as: 
 

. 

 
 If we introduce the combined vector of the electric current density , and the corresponding 
charge density , defined by 

, 

 
Maxwell´s equations then are given as (MAUERSBERGER, 1964, page 23) 
 

.                              (6.1a) 

 
 We return to the original version (6.1) of Maxwell´s equations. The relativistic transformation of 
these equations from the resting frame to an arbitrarily moving frame of reference is connected with 
famous names in physics: Einstein (1905) (single electron), and Minkowski (1908) (general and complete 
solution of the problem). This transformation corresponds to a transformation from Eulerian coordinates 
to Lagrangian ones. We will follow Sommerfeld (SOMMERFELD, 1949) and Mauersberger 
(MAUERSBERGER, 1964, chapter 1.75). In non-relativistic approximation, the field vectors are 
transformed from the resting to the moving system according to 
 

.                                                (6.2) 

 
 If we introduce the first two members of (6.2) in (6.1), equations (6.1) transform to  
 

. 

 Now, we introduce the following vector relationship, valid for any vector ,  
 

.                         (6.3) 
 
Then, the “Lagrange” version of Maxwell’s equations (6.1), by applying (1.2), is given by 
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, 

. 

 
 In the moving system, we have 

.                                                          (6.4) 
 
 The final set of equations, applicable to fluid dynamics, is given by 
 

                                      (6.5) 

 
Applying the - operation on the last member of (6.5), and observing that 
 

, 
 
the equation of continuity is given by 

.                                                    (6.6) 
 
 If there is only a translation of coordinates with a constant velocity vector , the operator  
in (6.5) is replaced by . That case played an important role in the early theory of special relativity. 
 We mention that equations (6.5), (6.6) can be transformed to Lagrangian coordinates by applying 
(A1.7a), (A1.8) of Appendix 1 together with the definition of a covariant derivative. Then the analogy to 
the original equations in a laboratory frame becomes closer. Additionally we learn that  are 
contravariant vectors, while  are covariant ones. This can be seen also in equations (6.7). 
 Integrating over material surface areas and over material volumes respectively the integral 
versions of (6.5) and (6.6) are 

         (6.7) 

 
Here, we have Faraday´s , Ampere´s, and Coulomb´s laws together with the law for absence of magnetic 
poles, and the equation of continuity for electric charge density. If Ampere and Faraday had been able to 
perform their experiments while walking, they would have drawn their conclusions equivalently to 
equations (6.7). 
 In atmospheric electrodynamics, we will apply the equations that are valid in the vacuum (no 
dielectric polarization, no magnetization of the fluid) and write (6.5) as 
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     .                                        (6.8) 

 
 With regard to the equations to be derived, we list special properties of the electromagnetic field: 
 

.       (6.9) 

 
Here, p is the vector of momentum, S is Poynting´s vector,  is Lorentz´ force, T Maxwell´s stress 
tensor, and  is energy density. Moreover,  is dielectric constant, and  is magnetic permeability. 
 The equation for electromagnetic momentum density p is obtained from: 
 

 

i.e. 
.                                          (6.10) 

 
The result can be obtained without difficulty, though we leave the derivation of (6.10) as well as of (6.13) 
to the reader. As a hint we note that for any tensor , and so for  with the first scalar , 

 
. 

 
 It is more convenient to introduce the vector . Using in (6.6) the equation of continuity 
of the fluid, , we find that the following equation (6.11) is equivalent to the 
hydrodynamic equation of motion (3.1): 
 

,                                                                (6.11) 
 

.                                         (3.1) 
 
It is known that Maxwell´s stress tensor T in electromagnetic theory act in the same way as the friction 
tensor F does in fluid dynamics. If we add both equations, we get a momentum equation for a fluid in 
which mechanical and electromagnetic momentum act together.  
 The vorticity-equation for electromagnetic momentum is equivalent to the vorticity equation of 
fluid dynamics: 

                                               (6.12) 
 

                                                  (3.2) 
 
We conclude, that all results obtained in 4., concerning vorticity theorems, apply equally well to the field 
of electromagnetic momentum.  
 The equation for electromagnetic energy density  is obtained from: 
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i.e. 
                                           (6.13) 

 
 We compare this result with the first law of thermodynamics for a fluid 
 

.                        (6.14) 
 
Here, u is internal energy,  is the vector of heat flux, and  is energy dissipation due to 
friction. Both equations have the same mathematical “structure”. Again, if we add both equations, we get 
an energy equation for a fluid in which mechanical and electromagnetic momentum act together: 
 

.            (6.15) 
 
 Additionally, we can find an electromagnetic entropy equation, similar to that in thermodynamics 
of fluids  

.                     (3.14) 

 

If we define an integrating denominator  (a temperature, different from T) by the equation 
 

,                                                       (6.16) 

where  is entropy, 

               (6.17) 
 
 Addition of (3.14) and (3.17), we find for the combined system the entropy equation as  
 

   (6.18) 
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