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Abstract

Global water vapour total column amounts have been retrieved from spectral data
provided by the Global Ozone Monitoring Experiment (GOME) flying on ERS-2,
which was launched in April 1995, and the SCanning Imaging Absorption spectro-
Meter for Atmospheric CHartographY (SCIAMACHY) onboard ENVISAT launched
in March 2002. For this purpose the Air Mass Corrected Differential Optical Ab-
sorption Spectroscopy (AMC-DOAS) approach has been used. The combination
of the data from both instruments provides a long-term global data set spanning
more than 12 years with the potential of extension up to 2020 by GOME-2 data on
MetOp.

Using linear and non-linear methods from time series analysis and standard
statistics the trends of water vapour columns and their errors have been calcu-
lated. In this study, factors affecting the trend such as the length of the time series,
the variance of the noise and the autocorrelation of the noise are investigated. Spe-
cial emphasis has been placed on the calculation of the statistical significance of
the observed trends, which reveal significant local changes from −5% per year
to +5% per year. These significant trends are distributed over the whole globe.
Increasing trends have been calculated for Greenland, East Europe, Siberia and
Oceania, whereas decreasing trends have been observed for the northwest USA,
Central America, Amazonia, Central Africa and the Arabian Peninsular.

The idea of the comprehensive trend and significance analysis is to get evidence
for the truth of these observed changes. While the significance estimation is based
on intrinsic properties such as the length of the data sets, the noise and the autocor-
relation, an important aspect of assessing the probability that the real trends have
been observed is a validation with independent data.

Therefore an intercomparison of the global total column water vapour trends
retrieved from GOME and SCIAMACHY with independent water vapour trends
measured by radiosonde stations provided by the Deutsche Wetter Dienst DWD
(German Weather Service) is presented.

The validation has been performed in a statistical way on the basis of univariate
time series. Information about the probability of agreement between the two inde-
pendently observed trends, conditional on the respective data, is revealed. On the
one hand a standard t-test is used to compare the trends and on the other hand a
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Bayesian model selection approach has been developed to derive the probability of
agreement.

The hypothesis of equal trends from satellite and radiosonde water vapour data
is preferred in 85% of compared pairs of trends. Substantial evidence for the hy-
pothesis of agreeing trends is found in 26% of analysed trends. However, also
disagreement has been observed, where the main reason has been identified on
the one hand as the different spatial resolutions of the instruments. This means,
that the radiosonde measurements can resolve very localised events, which is not
possible with the satellite instruments. On the other hand, in contrast to the in
principle continuously available (on a monthly mean basis) GOME/SCIAMACHY
data, missing data in the radiosonde time series lead to trend discrepancies.

The identification and validation of water vapour trends is an important step
for a better understanding of climate change, but water vapour is not the only
contributing quantity. Beside water vapour, decisive parameters are temperature,
clouds, precipitation, vegetation and many more. A promising framework for the
investigation of a multivariate data set of environmental variables is given by the
Markov chain analysis. As a first approach, the Markov chain analysis has been
applied to a bivariate water vapour – temperature data set, where the global near
surface temperatures are provided by the Goddard Institute of Space Studies (GISS)
and cover a time span from 1880 to 2005. The temperature data are retrieved from
ground stations and are mainly based on the Global Historical Climatology Network
(GHCN).

In the framework of a Markov chain analysis, the bivariate set of data is reduced
to a univariate sequence of symbols, which can be described as a discrete stochastic
process, a Markov chain. This Markov chain represents the water vapour – tempera-
ture interaction or state of a region. Several descriptors have been calculated, such
as persistence, replacement of and entropy. This approach is new in environmental
science.

Exemplarily two climate systems, the Iberian Peninsular and a region at the is-
lands of Hawaii in the central Pacific Ocean, are investigated. The Markov chain
analysis is able to retrieve significant differences between the two climate systems
in terms of the characteristic descriptors, which reflect properties such as climate
stability, rate of changes and short term predictability.
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1 Introduction

Water vapour is the most important natural greenhouse gas in the atmosphere and
plays a crucial role in the context of climate change, because of strong feedback
mechanisms (Held and Soden, 2000). Water vapour is a key player in atmospheric
chemistry, e.g. the rapid conversion of sulfur trioxide to sulfuric acid, it is a source
of the OH radical, and is also important for the ozone chemistry (Stenke and Grewe,
2005). Thus the knowledge of the global distribution of water vapour and its
evolution in time is of utmost importance for climate system studies.

The strong infrared radiation absorbing character of water vapour generates the
natural greenhouse effect. Without water vapour the global mean temperature at
the surface would be 20 ◦C lower than today (Häckel, 1999). In this context the
transport of water vapour constitutes an important aspect in the climate system.
Atmospheric water vapour represents the movement of energy in the form of latent
heat. By condensation this latent heat can be released yielding a warming of the
atmosphere, which affects global circulation systems associated with weather and
climate.

The Earth’s surface temperature results from an equilibrium state of the incoming
solar radiation and the outgoing terrestrial radiation. Changes in the atmospheric
composition, especially those of greenhouse gases such as water vapour (H2O),
carbon dioxide (CO2) and methane (CH4) can alter the outgoing terrestrial radia-
tion which leads to a new equilibrium state between the incoming and outgoing
radiation fluxes, thus resulting in a changing Earth surface temperature. This has
been reported by the Intergovernmental Panel on Climate Change (IPCC, 2007),
which is a scientific intergovernmental body, commissioned to evaluate the risks
of climate change. Carbon dioxide and methane, which are also measured with
the SCIAMACHY instrument (Buchwitz et al., 2006; Schneising et al., 2008), are
particularly important in the discussion of the anthropogenic greenhouse effect.

In the debates about climate change and the greenhouse effect, climate models
predict e.g. a global increase of water vapour contents due to the global warming
caused by increasing CO2 and other greenhouse gases (Dai et al., 2001). This in-
creased water vapour reduces the outgoing long-wave radiation, which yields to
an additional warming of the troposphere (IPCC, 2007). Together with these indi-
rect effects on the atmospheric water vapour contents, direct influences of anthro-
pogenic interventions such as irrigation (Boucher et al., 2004) and deforestation
(Gordon et al., 2005) alter the water vapour cycle and thereby the concentrations
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on local as well as on global scale. Therefore, a global monitoring of the atmo-
spheric water vapour content is needed, which can be achieved using remote satel-
lite sensing. The global water vapour total column amounts used in the present
study have been retrieved by the Air Mass Corrected Differential Optical Absorp-
tion Spectroscopy approach (AMC-DOAS) (Noël et al., 2004) from spectral data
measured by the Global Ozone Monitoring Experiment (GOME) flying on ERS-2
which was launched in April 1995 and the SCanning Imaging Absorption spectro-
Meter for Atmospheric CHartographY (SCIAMACHY) onboard ENVISAT launched
in March 2002. The complete amount of water vapour is given in grams per at-
mospheric column on a 1cm2 base (unit: g/cm2). For the trend study, the data
set is spatially gridded on a global 0.5◦ × 0.5◦ lattice and averaged over time on
a monthly mean basis. Thus we are dealing with 259200 time series each with a
length of 144 months (minus a few data gaps).

The water vapour column of the atmosphere can be seen as a proxy for the
climate state of a region, whether it is, for instance, humid or dry. Moreover, it is
strongly linked to the surface temperature of air. This strong correlation is shown by
Wagner et al. (2006) for water vapour columns retrieved from GOME. The water
vapour column amounts are high in the tropics, low over the poles and medium
over the temperate zone. Figure 1.1 shows as an example the global annual mean
of the water vapour column amounts for the year 2006 retrieved by the AMC-DOAS
method (cf. Sect. 3.1.1) from SCIAMACHY data.

The water vapour trends can be seen as tracers following the climate state of a
specific region. A decreasing trend, for example, could be a change from a humid
state to a dry state of a specific region. An infinitely decreasing trend is impossible,
so the trend has to stagnate at a certain point. If the water vapour columns have
significantly changed, dramatic consequences for the flora (major vegetation types,
savanna, tundra etc. as reported by Melillo (1999)), fauna and agriculture cannot
be ruled out. Such changes would also affect and interfere with human society.
Moreover this new state could be stable and a way back is perhaps not easy, or,
connected with a strong hysteresis as shown by Scheffer and Carpenter (2003) in
the framework of bifurcation analysis. The same arguments are valid for increasing
trends vice versa.

The water vapour columns and their changes are strongly linked to the climate
state and the vegetation type of a region. Plants, animals and humans are adapted
to their environmental conditions. Changes or trends of the atmospheric water va-
pour columns, e.g. to dryer or more wet situations, can have critical consequences
for life. Moreover, water vapour trend calculations are important to assess the qual-
ity of model results and increase our knowledge of the hydrological cycle on global
and local scale.
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Figure 1.1: Annual mean of water vapour column amounts for the year 2006 de-
rived from SCIAMACHY measurements. High water vapour columns are found
near the equator, especially over rainforests. Small water vapour amounts are
observed near the poles.

The water vapour trend study comprises the years 1996 to 2007, i.e. 12 years
of global satellite data. This length of data cannot resolve long-term oscillation.
However, it is enough to show significant water vapour changes in several regions
on Earth.

This thesis is subdivided into 7 chapters. Chapter 1 is this introductory part. In
Chap. 2 some fundamentals regarding the Earth atmosphere, water vapour and
the greenhouse effect are discussed. Additionally, the role of statistics in environ-
mental science is highlighted, which includes a short discourse through the field
of standard mathematical statistics and Bayesian statistics. In Chap. 3 the wa-
ter vapour retrieval method is explained schematically. Then, the combination of
the GOME and SCIAMACHY data sets is presented. The water vapour trends are
estimated in Chap. 4 including a significance analysis. Furthermore, the global
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averaged trends are investigated and correlated with global near surface tempera-
ture measurements. Chapter 5 deals with the validation of the satellite water va-
pour trends with independent water vapour trends from ground stations measured
with radiosondes. Since water vapour is strongly correlated with the near surface
temperature an analysis of the interaction of water vapour and temperature is pre-
sented in Chap. 6. To end this, the combined water vapour – temperature data
set has been described as a stochastic process, a Markov chain. Chapter 7 gives the
conclusions and an outlook. Finally, the appendix gives supplementary information
about standard statistical methods and Bayesian methods used in this thesis.
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2 Fundamentals

2.1 Earth’s atmosphere

Life, as we know it today, would not exist without the Earth’s atmosphere. The
main meteorological and physical processes in the atmosphere are constituted by
the solar radiation and its spatial and temporal variability due to the Earth’s ro-
tation (Roedel, 2000). The solar radiation interacts with the ocean, the land and
the atmosphere and additionally, the gravity of the Earth contributes to the main
forcing processes. The radiation budged is in principle given by:

• The incoming solar radiation with a maximum at about 500nm. This radia-
tion is absorbed and scattered in the atmosphere and at the Earth’s surface.

• The thermic back reflexion from the Earth’s surface and the atmosphere with
a maximum at about 10μm. This radiation is partly absorbed by the surface
and the atmosphere and partly lost in space. Overall, there is a net balance
between thermic infrared radiation and incoming solar radiation.

• Other heat and energy transport without radiation processes.

The chemical composition of the atmosphere is made of several gases with differ-
ent properties. The following Tab. 2.1 shows the main constituents of dry air, which
are in principle constant over spatial scales (up to about 90km) and time scales of
10000s of years or even the age of the Earth. The composition of air regarding
these gases is widely homogeneously distributed up to a height of about 80km. Be-
side these permanent components, aerosols and several trace gases with life times
from hours to years are present in the atmosphere. Thereunder we have the wa-
ter vapour (H2O), with 99.99% in the troposphere and carbon dioxide (CO2) with
about 355ppm in the atmosphere. Furthermore, without the claim of complete-
ness, there are methane (CH4) (ca. 1.7ppm), hydrogen (H2)(ca. 0.5ppm), ozone
(O3) (ca. 0.05-5ppm), nitrous oxide (laughing gas) (N2O) (ca. 0.3ppm), several
nitrogen oxides (ca. 0.01-50ppm), carbon monoxide (CO) (ca. 0.1ppm), sulphur
compounds (ca. 0.1-100ppb (parts per billion)), ammonia (NH3) (ca. 1-20ppb)
and many others.
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Constituent Symbol Volume percent
Nitrogen N2 78.09
Oxygen O2 20.95
Argon Ar 0.93
Neon Ne 18.2 · 10−4

Helium He 5.24 · 10−4

Krypton Kr 1.14 · 10−4

Xenon Xe 0.087 · 10−4

Table 2.1: Chemical composition of dry air from Roedel (2000). Note, that 10−4

volume percent corresponds to one part per million (ppm).

2.1.1 Vertical structure of the atmosphere

A common division of the atmosphere is based on the temperature profile. Figure
2.1 shows the US standard atmosphere defined 1976, which still constitutes a ref-
erence in several research activities. The mean temperature of air at the surface
amounts to about 15 ◦C, which results mainly from the incoming solar radiation
and the backscattered radiation from greenhouse gases (cf. Sect. 2.1.2). With in-
creasing height, the temperature of air decreases until 10 to 13km in high and
tempered zones and until about 18km in the tropics. This area is called tropo-
sphere and ends at a minimum temperature at about -50 ◦C to -55 ◦C in tempered
zones and -80 ◦C in the tropics, called tropopause. Above this boundary, which is
the stratosphere, the temperature increases again, which is caused by the absorp-
tion of ultraviolet radiation at wavelengths above 242nm (Prölss, 2001) by ozone.
The stratosphere ends at a maximum temperature at about 0 ◦C at around 50km
(Roedel, 2000), which is the stratopause.

Thereafter the temperature decreases (cf. Fig. 2.1) until the absolute minimum
is reached at 80-90km. This region is called mesosphere and the boundary at the
minimum is the mesopause. Above this minimum the temperature again increases
(which cannot be seen in Fig. 2.1) in this region, which is denoted as thermosphere,
and converges above 200km to about 1000 ◦C. The reason for the high temperature
is the particles mean free path length of several kilometres, due to the low density
of air at this height.

2.1.2 Greenhouse effect and climate change

The global mean temperature of the Earth amounts to approximately 288K. Ac-
cording to the Stefan-Boltzmann law and assuming a thermic emissivity of 95%,
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Figure 2.1: US standard atmosphere 1976.

the outgoing thermic infrared radiation would yield about 373W/m2. The total
incoming solar radiation at the Earth surface is instead ca. 175W/m2 and at the
top of the atmosphere about 342W/m2. This seems to be, on a first inspection,
like a decisive discrepancy, because the equilibrium between incoming and out-
going radiation is violated. This alleged contradiction is solved by the fact, that
the atmosphere absorbs infrared radiation and thus constitutes an emitter by itself.
The backscattered radiation from the atmosphere to the Earth’s surface amounts
to ca. 300W/m2, thus the net outgoing radiation is about 73W/m2, which is be-
low the incoming energy (Roedel, 2000). This shielding effect of the atmosphere
is often compared with a glasshouse, which is transparent for the incoming short
wave radiation and reserves the backscattered long wave radiation. This scenario
is popularly named “greenhouse effect”. Without the “greenhouse effect” the mean
Earth’s surface temperature would be −15 ◦C instead of the actual global mean
temperature of +15 ◦C. The main responsibility for the absorption of thermic ra-
diation can be attributed to water vapour, CO2, CH4, O3, N2O and also clouds.
The natural amount of several greenhouse gases has increased decisively since the
pre-industrial times, which is caused by human activities e.g. combustion of fossil
fuels. Table 2.2 shows the increase of three major anthropogenically influenced
greenhouse gases.
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Species 2005 1750 Increase [%]
CO2 [ppm] 379± 0.65 277± 1.2 37
CH4 [ppb] 1774± 1.8 715± 4 148
N2O [ppb] 319± 0.12 270± 7 18

Table 2.2: Increase of long-lived greenhouse gases since the start of the industrial
era (IPCC, 2007).

2.1.3 Atmospheric water vapour and the hydrological cycle

Water vapour is the gas phase of water and can be produced by evaporation of wa-
ter and sublimation of ice. 99.99% of the atmospheric water vapour are located in
the troposphere. The Earth’s atmosphere contains about 13 ·1015 kg or 13 ·1012 m3

water, which is mostly water vapour. Regarding the mean precipitation rate of
about 1000mm per year, the mean lifetime of water vapour amounts only to about
10 days (Roedel, 2000). This fast exchange is embedded into the global hydrolog-
ical cycle, which describes the movement of water in the reservoirs, ocean, land,
and atmosphere. The water cycle constitutes a closed system, thus the overall wa-
ter content is constant over time. Figure 2.2 shows schematically the hydrological
cycle.

The movement of water is initialised by the energy from the sun. Water evap-
orates from the oceans and fresh water reservoirs. Additionally water evaporates
from plants, which is called evapotranspiration, and sublimates from ice and snow,
which is the direct phase transition between the solid and gaseous phase. The wa-
ter vapour is transported with warmer air up into the atmosphere and distributed
globally by winds. The uprising air cools down and water condenses to cloud parti-
cles, which fall out as precipitation. Over several reservoirs (cf. Fig.2.2) the water
cycle is closed and the evaporation/precipitation mechanism can continue.

Although the water cycle content is constant over time, the distribution of wa-
ter within the reservoirs can vary. For instance, during colder times or ice ages,
more water is stored in the ice and snow reservoirs, whereas in warmer times more
water is stored in the oceans and atmosphere. The IPCC (2007) estimates an am-
plification of the water cycle in the 21st century. This means, that dry regions get
dryer and humid region get more humid. Although the hydrological cycle moves
immense masses of water, human activities do influence the cycle, even in such a
big system. The impact of human influence comprises amongst others:
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Figure 2.2: Global water cycle, graphic courtesy of the U.S. Department of the
Interior U.S. Geological Survey.

• Agriculture.

• Alteration of the chemical composition of the atmosphere.

• Construction of dams.

• Deforestation and afforestation.

• Removal of groundwater from wells.

• Water abstraction from rivers.

• Urbanisation.
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2.1.4 The water molecule and water absorption

The water molecule is the most abundant molecule on the Earth’s surface. Water, at
room temperature, is in principle colourless, tasteless, odourless and liquid. Water
is an excellent solvent for many substances and it exists naturally in all three states
of matter. Water is essential for life as we know it today.

O

H H

104.45◦

Figure 2.3: Structural formula of water
vapour.

Figure 2.3 depicts the structural for-
mula of water. The molecule consists
of two hydrogen atoms and one oxygen
atom, which form a triangular. The oxy-
gen atom resides at the vertex and the
two hydrogen atoms span an angle of
104.45◦. Since the electronegativity of
oxygen is higher than that of the two
hydrogens, the vertex of the molecule
is negatively charged compared to the
bottom side. Such difference in the
electric charge is called a dipole. Due to
the so-called dipole characteristic water
can build hydrogen bonds with other water molecules. Additionally, the attraction
of the oxygen and the two hydrogens is responsible for a strong bonding, which be-
come apparent in the high boiling point (100 ◦C) and the high melting point (0 ◦C).
These have to be seen in respect with chemically similar hydrogen compounds
such as hydrogen sulfide (H2S), hydrogen selenide (H2Se) and hydrogen telluride
(H2Te), which have boiling points of -61 ◦C, -41 ◦C and -1 ◦C and melting points
of -86 ◦C, -66 ◦C and -49 ◦C. Furthermore, the dipole is the reason, why water va-
pour absorbs thermic radiation strongly, because vibrational/rotational absorption
only takes place, if there is a periodic change in the electric dipole moment of the
molecule. Thus, water vapour strongly absorbs e.g. the backscattered thermic radi-
ation of the Earth, from the microwave to the visible regions of the electromagnetic
spectrum. This water vapour absorption is e.g. measured by SCIAMACHY. Figure
2.4 shows a typical measured spectrum from SCIAMACHY. The extraterrestrial so-
lar irradiance is plotted in red and the backscattered radiance is shown in blue. The
main absorption bands from water vapour are clearly visible.
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Figure 2.4: SCIAMACHY spectrum, before absorption takes place (red) and after-
wards (blue). From Gottwald et al. (2006)

2.2 The GOME and SCIAMACHY instruments

2.2.1 The GOME instrument on ERS-2

GOME (Global Ozone Monitoring Experiment) is a passive imaging grating spectro-
meter on the European Remote Sensing satellite (launched on April 21st, 1995),
which flies on a sun synchronous orbit at an altitude of about 785km. Therefore,
a period of about 100min is achieved, which is equivalent to about 14.3 orbits per
day. ERS-2 has a global coverage of about three days and an equator crossing time
at 10:30 local time. GOME measures the reflected, backscattered and transmitted
solar radiation upwelling from the top of the atmosphere (Burrows et al., 1999) in
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nadir (downward) viewing mode. With a swath of about 960km a resolution of
ca. 40km× 320km is achieved. The spectral regions from 240nm to 790nm are
captured and several trace gases such as ozone (O3), nitrogen oxide (NO2), oxy-
gen (O2), water vapour (H2O), bromine monoxide (BrO), chlorine dioxide (OClO),
sulphur dioxide (SO2) and iodine monoxide (IO) can be measured.

2.2.2 The SCIAMACHY instrument on ENVISAT

SCIAMACHY (Greek: σκιαμαχια, “fighting shadows”) (SCanning Imaging Ab-
sorption spectroMeter for Atmospheric CHartographY) is a passive imaging grat-
ing spectrometer on the Environmental Satellite ENVISAT (launched on March 1st,
2002). Similar to ERS-2, ENVISAT flies on a sun synchronous orbit at a height of
about 785km. It has a period of about 100min with 14.3 orbits per day. ENVISAT
crosses the equator at 10:00 local time. Thus GOME and SCIAMACHY cross each
point on Earth with a time lag of 30 minutes. SCIAMACHY measures the reflected,
backscattered and transmitted solar radiation upwelling from the top of the at-
mosphere (Burrows et al., 1990, 1995; Bovensmann et al., 1999; Gottwald et al.,
2006). SCIAMACHY captures the spectral regions from 214nm to 1773nm contin-
uously in six channels. Additionally, two channels from 1934nm to 2044nm and
from 2259nm to 2386nm give information on infrared absorbing species. Amongst
others, information on atmospheric gases and trace gases such as O3, NO2, O2, H2O,
CH4, CO2, CO, BrO, OClO, SO2 and IO can be retrieved with SCIAMACHY. Further-
more, information can be derived about aerosols and clouds. SCIAMACHY operates
in three different measuring geometries, which are also shown in Fig. 2.5:

• Nadir-view: The nadir measuring mode captures the concentrations of sev-
eral trace gases in the total atmospheric column on a 960km wide swath
orthogonal to the flight direction. The resolution is about 30km in flight
direction and about 60km orthogonal to the flight direction.

• Limb-view: The limb mode allows to retrieve information on the vertical dis-
tribution of trace gases. The field of view in flight direction is about 2.6km
in the distance of about 3000km. Orthogonal to the flight direction the res-
olution of the measurements accounts to 240km. Thus, in limb mode the
vertical atmosphere is sampled in 3km steps.

• Occultation: In the occultation mode SCIAMACHY directly observes the sun
or the moon through the atmosphere. The resolution is 30km horizontal
and 2.5km vertical. An advantage of the occultation mode is the high pre-
cision of the measurements, but a disadvantage is the bad spatial coverage,
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because occultation is only possible during sun/moon rises (from the instru-
ments view).

Figure 2.5: SCIAMACHY spectrometer in the field. The two measuring modes are
shown, nadir and limb. Here it has to be noted, that the nadir and limb measure-
ments are performed alternately and not simultaneously as insinuated by this
viewgraph. Figure provided by S. Noël, IUP.

In this thesis, the water vapour data from GOME and SCIAMACHY are used, which
have been retrieved from nadir measurements.

2.3 Statistics

Statistics is a mathematical science, which is embedded into the theory of proba-
bility. Its main objectives are the analysis, interpretation or explanation and pre-
sentation of data. It is widely used in natural science, social science, humanities,
government and business and provides also methods for prediction and forecasting
based on data.

The three major objectives of statistics are:

• Description: The descriptive statistics describe data, which have been recor-
ded, with characteristic quantities such as the mean and the variance. Fur-
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thermore, the graphical presentation using diverse diagrams and histograms
belongs to the description.

• Exploration: The data exploration goes a step further and can be sum-
marised as the search for structures or characteristics in the data. Thus, a
scatter-plot between two random variables can give e.g. information of possi-
ble correlations.

• Induction: The inductive statistics make massive use of probability theory
and stochastics to find evidence for underlying processes or basic populations.
The induction provides methods to answer questions such as: Are the data
normally distributed? Is the observed trend statistically significant? Which
theory is superior, A or B?

Two major schools of statistics coexist, the frequentist statistics and the Bayesian
statistics. The two different concepts are outlined in the next section.

2.3.1 Frequentist statistics vs. Bayesian statistics

The frequentist statistics approach was mainly developed by e.g. Fisher, Neyman
and Pearson at the beginning of the 20th century. The underlying philosophy of the
frequentist statistics is the interpretation of an events probability as the limit of its
relative frequency in a large number of trials. A major component of how statistics
are used in environmental science is the hypotheses testing, which is used under
the framework of induction to make decisions using experimental data. The basic
concept of hypothesis testing is to set up a null-hypothesis H0, which is assumed to
be true and an alternative hypothesis H1, which is the complementary event of H0.
Then the probability of observing a value of a test statistic (according to H0) that
is at least as extreme as the value that was actually observed is inferred. The null-
hypothesis is typically rejected, if the observed probability is below 0.05, which is
also called the 95% confidence level. Such a case would confirm the alternative
hypothesis.

The Bayesian statistics have been developed by Bayes (1763) and de Laplace
(1812), thus they are much older than the frequentist approach, but were then
largely forgotten, until Jeffreys (1939) rediscovered the ideas of Bayes and de La-
place. The Bayesian concepts have undergone a renaissance in the late 20th century,
amongst others by the increase of computational power. Important impact on the
Bayesian development in recent times have e.g. Jaynes and Bretthorst (2003). An
advantage of the Bayesian formalism is, that it is based completely on probability
theory, whereas the frequentist statistics have not such an basic underlying concept,
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and are rather a compilation of a large amount of diverse tests and methods. As
in the frequentists approach, the central point of hypothesis testing can also be ac-
complished within the Bayesian framework. However, Bayesian hypothesis testing
can better be described as a model selection procedure, i.e. infering, which model
or hypothesis has the higher probability in explaining certain data or phenomena.
The mathematical derivation of the model selection method is given in the App. E.

The two major differences between frequentist statistics and Bayesian methods
are:

• Philosophical difference: The deep philosophical difference between Bay-
esian theory and frequentist statistics is, that the Bayesians draw conclusions
about the relative evidence for parameter values given a data set, while fre-
quentists estimate the relative chance of data sets given a parameter value.
This can be elucidated in the sense of conditional probabilities. A conditional
probability is the probability of a proposition X given the occurrence of an-
other proposition Y and is denoted as P(X |Y ). In the frequentist approach X

could be e.g. a parameter value and Y could be the null-hypothesis of some
underlying properties e.g. normal distribution. Following, one would derive
the probability of the parameter assuming that the null-hypothesis is true.
The Bayesian concept can give the reverse, i.e. the probability of a hypoth-
esis if a certain parameter has been observed P(Y |X ). Hence, generally the
frequentist statistics can infer the probability of data or parameters given the
null-hypothesis P(data|hypothesis), while Bayes’ theorem can give the re-
verse, the probability of the hypothesis given the data or parameters, which
is P(hypothesis|data).

• Prior information: Bayesian methods comprise prior information about the
truth of a hypothesis or parameter range, which reflects the knowledge (or
ignorance) before the data have been analysed. In frequentist statistics such
prior information does not exist.

The fundament of Bayesian statistics is given by Bayes’ theorem, which can be
formulated as:

P(Y |X , I) =
P(X |Y, I) · P(Y |I)

P(X |I) , (2.1)

where X and Y are propositions and I denotes relevant background information.
The I is often neglected, but it has to kept in mind, that no absolute probabilities
exist without certain background assumptions or information. P(Y |X , I) is called
the posterior probability, P(X |Y, I) is the likelihood, P(Y |I) is the prior probability



30 2 FUNDAMENTALS

and P(X |I) has former been called the marginalization likelihood, but nowadays
Sivia and Skilling (2006) introduced the term ’evidence’ for the denominator (more
information is given in the appendix).

2.3.2 Statistics in climatology

Climatology is, in a large part, the study of the statistics of our climate (Storch and
Zwiers, 1999). Mathematical statistics are widely used from simple methods, such
as the mean and variance, to sophisticated concepts, which reveal the dynamics of
the climate system.

Our climate is a nonlinear dynamical system, which is mainly driven by large
external forcing like the solar radiation. But the climate is also influenced by seem-
ingly marginal phenomena like flapping butterflies (Storch and Zwiers, 1999). This
is also founded in the works of Lorenz (1963), who has built the fundament of the
theory of chaotic systems.

Although the climate system is generally a deterministic system we cannot de-
scribe it deterministically, because we do not know all factors controlling the cli-
mate mechanisms. Therefore we use probabilistic concepts and statistical methods
to describe the climate. A hitherto successful (and often the only possible) strat-
egy is to analyse only a few number of climate parameters and identify the rest as
background noise. Often the noise is interpreted as nuisance, but it can also be
seen as an important information of the system. Furthermore, nonlinearities and
instabilities are responsible for the unpredictability of the climate beyond certain
times, which is an argument for the use of probabilistic approaches.
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3 The water vapour data set

3.1 AMC-DOAS Retrieval

3.1.1 The AMC-DOAS principle

The global water vapour total column amounts used in the present study have been
retrieved by the Air Mass Corrected Differential Optical Absorption Spectroscopy
approach (AMC-DOAS) (Noël et al., 2004) from spectral data measured by the
Global Ozone Monitoring Experiment (GOME) flying on ERS-2 which was launched
in April 1995 and the SCanning Imaging Absorption spectroMeter for Atmospheric
CHartographY (SCIAMACHY) onboard ENVISAT launched in March 2002. The ba-
sic principle of the method is to calculate the difference between the measured
Earthshine radiance and the solar irradiance at wavelengths where water vapour
absorbs radiation (here the wavelength band from 688nm to 700nm is used) and
relate this absorption-depth to the water vapour column concentration. Because
visible measurements are restricted to daylight conditions and almost cloud free
scenes, the AMC-DOAS method provides in principle a cloud free daytime water
vapour climatology, however it can also be applied to partially cloudy scenes. This
is achieved using an air mass correction factor (AMCF) based on the O2 column
(Noël et al., 2004). Within the AMC-DOAS retrieval certain surface and atmo-
spheric conditions are assumed, namely no surface elevation, a surface albedo of
0.05, a tropical atmosphere and especially the absence of clouds. Usually these con-
ditions differ from the real ones, which is accounted for by the AMCF derived from
O2 absorption. Via the AMCF the water vapour columns are scaled such that the
correct O2 optical depth is achieved (see Noël et al. (2004) for details). Deviations
of the AMCF from unity indicate discrepancies between the assumed and the real
conditions and if these deviations are too large (AMCF< 0.8), the water vapour
measurements are discarded. One of the main reasons for AMCF’s differing from
unity is the presence of clouds in the observed scene. Therefore the AMCF limit effi-
ciently sorts out too cloudy scenes, but it is possible to derive water vapour columns
also from partly cloudy scenes, as long as the cloud fraction is low (AMCF≥ 0.8).
In this sense the AMC-DOAS products provide a cloud-cleared climatology.

The AMC-DOAS method most probably slightly underestimates the water vapour
columns in cloudy cases, because contrariwise to the well mixed O2, the water
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vapour volume mixing ratio increases towards the surface. Thus the AMCF for
water vapour should be typically lower than that for O2. However, this second
order effect affects both, the GOME and SCIAMACHY measurements in the same
way and should not influence the water vapour trends in contrast to trends in
the cloud cover which can most probably influence the water vapour trends. A
qualitative estimation of the impact of clouds on the water vapour trends would be
on the one hand the observation of lower trends, if an increase in the cloud cover
over time would occur, because of increasing underestimated measurements with
time. A positive biased trend could be caused by a decrease in the cloud cover over
time, because then less data with a negative bias are measured. It has to be noted,
that this is also a second order effect, because the climatology is in principle cloud
free (only data with AMCF≥ 0.8), but it cannot be excluded.

3.1.2 Present state of the AMC-DOAS product

The AMC-DOAS method provides a completely independent data set, because it
does not rely on any additional external information. The retrieval of water vapour
data from the GOME instrument is described in Noël et al. (1999), where also
validation results of the data with SSM/I (Special Sensor Microwave Imager) data
are shown. Likewise, SCIAMACHY water vapour data have been validated with
SSM/I and ECMWF (European Centre for Medium-Range Weather Forecasts) data
(Noël et al., 2005). An intercomparison and a preliminary connection of both, the
GOME and the SCIAMACHY data sets, is shown in Noël et al. (2006). The high
quality of the two water vapour data sets is demonstrated from validation and
comparison results, which shows that they can be merged well together. Thus, the
trend analysis presented in this thesis is build on a solid fundament. Furthermore,
the water vapour data are gridded on a 0.5◦ ×0.5◦ lattice and averaged to monthly
means, which are representative for the respective months. A good overview of
other water vapour measuring instruments from space can be found in Brocard
(2006). Previous investigations of other water vapour retrievals from GOME are
described e.g. in Maurellis et al. (2000) and Lang et al. (2003). A similar water
vapour trend study to this is presented by Wagner et al. (2006) for the GOME data,
based on a different retrieval method described in Wagner et al. (2003).

3.2 The combination of GOME and SCIAMACHY data

GOME on ERS-2 has been measuring since June 1995 up to the present, but since
June 2003 no global coverage is provided as a result of a breakdown of the on-
board tape recorder. SCIAMACHY data are available since August 2002, but the
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SCIAMACHY instrument did not achieve final flight conditions until January 2003.
The quality of the SCIAMACHY water vapour data is furthermore slightly reduced
in 2002, because of the non-availability of an actual solar reference spectrum prior
to December 2002. Overall the most appropriate time for the change from GOME
to SCIAMACHY data results in January 2003.

When combining the data sets possible level shifts between GOME and SCIA-
MACHY measurements have to be accounted for. Therefore the period of near
simultaneous global measurements of GOME and SCIAMACHY, August 2002 to
June 2003, has been studied explicitly. The global agreement results in an average
deviation of −0.01g/cm2 with a scatter of ±0.25g/cm2 (Noël et al., 2007). This
means, that on a global mean, there is strictly speaking no difference between the
results of both instruments. This is anticipated, because the same retrieval method
(AMC-DOAS) is used for both instruments and the method is quite insensitive to
existing calibration differences between the GOME and SCIAMACHY instruments.
The scatter of the water vapour differences between the two instruments results
from local (single grid pixel) time series, which show deviations. Although these
differences on a local scale are small (±0.25g/cm2) compared to the total water
vapour column, they can influence the trend and have to be considered.

3.2.1 Possible causes of the level shift

The calibration between the instruments as a cause for the level shifts on local scale
can be ruled out, because the AMC-DOAS method is quite insensitive to absolute ra-
diometric calibration. Therefore two main aspects are considered to be responsible
for the differences:

1. Different equator crossing time.
GOME on ERS-2 and SCIAMACHY onboard ENVISAT, respectively, cross the
equator at 10:30 and 10:00 local time. That means SCIAMACHY and GOME
measure at different times slightly different states of atmospheric composi-
tion. It is most probable, that fluctuations in the water vapour column on
fast time scales caused by e.g. winds and clouds are responsible for the level
shifts. It follows that a possible mean level shift between both data sets has
to be allowed for the combination of the data on a local scale.

2. Differing spatial resolutions.
The spatial resolution of the GOME data is 40km × 320km, whereas it is
(typically) 30km× 60km for SCIAMACHY data. When combining both data
sets, different (higher) seasonal amplitudes have been accounted in Mieruch
et al. (2008) for the SCIAMACHY data with respect to GOME. Because of the
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higher resolution of SCIAMACHY, higher peaks (negative as well as positive)
of water vapour can be detected. However, it turned out, that the negligence
of the possible amplitude change has only very marginal influence on the
trend results. As described in Sect. 3.2.2 an amplitude change is not consid-
ered and the seasonal component is removed by calculating anomalies. But,
the resolution together with the cloud cover contributes to the level shift.
Due to the higher resolution, SCIAMACHY “sees” more cloud free pixels than
GOME which introduces a potentially positive bias for the SCIAMACHY data.
However, this bias is observed on local scale, it is not visible on average. As
mentioned in Sect. 3.1.1 we expect a negative bias for the AMC-DOAS data,
due to remaining clouds. Because of the different spatial resolutions, partly
cloudy scenes are more probable for GOME; therefore a more negative bias
for the GOME data compared to the SCIAMACHY data is expected. This is
in line with the findings of higher SCIAMACHY columns and thus positive
level shifts around the equator regions, where high cloudiness is more proba-
ble. Figure 3.1 shows the distribution of global level shifts, which have been
estimated in a least square sense in Sect. 4.1.1.

Figure 3.1: Level shift δ between GOME and SCIAMACHY measurements observed
from the least square regression in Sect. 4.1.1.
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The local level shifts result from a complex interaction of atmospheric processes
(clouds, winds, small scale fluctuations, diurnal cycle) within the 30 minutes time
delay of GOME and SCIAMACHY and instrumental differences (resolution).

The water vapour columns are retrieved on a daily basis, but it has to be noted
that ERS-2 and ENVISAT fly on a sun-fixed orbit, i.e. passing each point on Earth
at constant local time. Thus measurements from GOME and SCIAMACHY are snap-
shots of the actual atmospheric conditions at specific locations at specific times.

A global coverage is achieved for GOME data within 3 days and for SCIAMACHY
nadir measurements within 6 days. Thus, in principle monthly mean data provide
a data set without gaps. However, few gaps are observed even in the monthly
mean data, because high cloudiness and high mountain area (e.g. the Himalayas)
measurements are removed from the data by the AMC-DOAS algorithm. Moreover,
since GOME and SCIAMACHY are spectrometers using the sunlight, measurements
are only possible during daylight, and therefore no data is available at night, which
results in a lack of measurements at the north pole and Antarctica during the polar
nights. Since GOME and SCIAMACHY are measuring in the nadir viewing geometry
no profile information of water vapour can be retrieved in this mode.

The derivation of water vapour columns from GOME-type instruments has also
some unique advantages: The retrieval is possible over land and ocean and no
external calibration sources like radiosondes are required. Although the result-
ing water vapour time series is quite short compared to other instruments like
SSM/I which are looking forward to a 40 years series, it will be extended by other
SCIAMACHY measurements and especially by the series of GOME-2 instruments
on MetOp, of which the first one was launched successfully in 2006 (Noël et al.,
2008). The series of GOME-type instruments has therefore the potential to provide
independent and consistent water vapour data sets on both land and ocean for at
least 25 years.

3.2.2 The seasonal component

The strong seasonal component, which is enclosed in the water vapour data be-
cause of the relation to temperature, can clearly be seen in the AMC-DOAS prod-
uct, which is shown exemplarily for a water vapour time series near Goteborg in
Sweden (Fig. 3.2). The GOME data from 1996 to 2002 are plotted in red, while
the SCIAMACHY data are depicted in blue from 2003 to 2007. In Mieruch et al.
(2008) the oscillatory parts have been described by a Fourier series

St = η

4∑
j=1

�
β1, j · sin(2π j t/12) + β2, j · cos(2π j t/12)

�
, (3.1)
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(a) Seasonal component described by a
Fourier series.

(b) Seasonal component described as
anomaly.

Figure 3.2: Monthly mean water vapour time series from a location near Goteborg,
Sweden. Red: GOME, blue: SCIAMACHY.

on a monthly mean temporal grid, where t denotes the time. The β1, j and β2, j are
the Fourier coefficients which have been estimated in a least square sense. η =

1+ (γ− 1)Ut describes an amplitude change of magnitude γ at time t ≥ T0, where
Ut is a step function:

Ut =

�
0, t < T0

1, t ≥ T0
, (3.2)

and T0 is the point in time, when the GOME and SCIAMACHY data are merged
together. The seasonal component St is shown in Fig. 3.2(a) as a black curve.

Another possibility to describe the harmonic components is the calculation of the
seasonal cycle averaged over all years:

S′
n
=

1

12

T/12−1∑
i=0

Yi·12+n n = 1, ..., T/12 (3.3)

where Y represents the monthly mean water vapour columns and T is the total
number of months. The mean seasonal component is shown in Fig. 3.2(b) and
is quite equal to the Fourier description. It has to be noted, that trends or level
shifts in the data are not influenced by calculating anomalies. The trend analysis
has been performed for the two different approaches of modelling the seasonal
terms and it turns out, that the trends and also the errors are quite independent
of the choice of the above procedures. Therefore the averaged seasonal cycle has
been chosen to deseasonalise the data, by means of less computational costs. It
has to be noted, that the overall mean has been added to the anomalies to get the
deseasonalised data.
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4 Water vapour trends

4.1 Trend estimation

4.1.1 The trend model

The detection of trends is difficult and depends on the length of the time series, the
magnitude of variability and autocorrelation of the data (Weatherhead et al., 1998).
The trends can be influenced by level shifts inside the time series from instrument
changes or new instrumental calibration etc.. Short time series as well as high
variability, autocorrelation and level shifts in the data increase the uncertainty of
trend detection. Statistical methods are used to reveal trends and explore their
uncertainties. As discussed in Sect. 3.2 the analysis of overlapping GOME and
SCIAMACHY data strongly supports the use of a level shift model. The methods
used here are based on the approach of Weatherhead et al. (1998) and Tiao et al.
(1990) and have been adapted to our needs. The time series of the data (with
removed seasonal component) at one geolocation (i.e. a single grid point) can be
described by the following trend model:

Yt = μCt +ωXt +δUt + Nt , t = 0,...,T , (4.1)

where Yt contains the water vapour measurements. μ is the mean water vapour
column of the time series at time t = 0. Ct is a constant, which is unity for all t

and needed for the following consideration of autocorrelations. ω represents the
trend and Xt contains the time. In the case of monthly averaged data the time span
from January 1996 until December 2007 or from month 0 to 143 is considered.
The data have not to be necessarily equidistant as there may be missing data. δ is
the magnitude of a mean level shift at time t = T0 (0 < T0 < T ), where T0 = 84
represents the intersection of GOME and SCIAMACHY data on January 2003. Ut

describes the former introduced step function Eq. 3.2.
The last term Nt in Eq. (4.1) contains the unexplained portion of the data, i.e. the

noise. The noise Nt is assumed to be an autoregressive process of the order of one
[AR(1)] (Schlittgen and Streitberg, 1997), i.e.

Nt = φNt−1 + εt , (4.2)

where εt are independent random variables with zero-mean and variance σ2
ε
. This

assumption is used because environmental data are often autocorrelated, e.g. if
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the temperature is high at one day, a high temperature is likely on the next day.
The magnitude or the memory of the autocorrelation is presented by φ, which is
restricted to −1 < φ < 1, so the noise process Nt is stationary. The memory of the
data at lag one can be calculated using the autocorrelation function φ = CorrNt Nt−1

,
which is directly linked to the well known correlation coefficient.

Generally the autocorrelation function is restricted to continuous, statistically
stationary stochastic functions, or in the discrete case equidistantly sampled data.
Since there are gaps in our time series the discrete correlation function for analysing
unevenly sampled data which was originally developed by Edelson and Krolik
(1988) for astronomical problems, was applied.

To calculate the autocorrelation of the noise, the noise itself has to be determined
by applying the model (Eq. (4.1)) to the data in a least square sense and subtract
the fit from the data. The noise Nt is then given by the remaining residuals:

Nt = Yt − (�μCt + �ωXt +
�δUt) , (4.3)

where �μ, �ω, �δ are the least square estimators. The Nt are used to calculate first the
set of unbinned discrete correlations

θt =
Nt ·Nt−1

σ2
N

, t = 1,...,T , (4.4)

where the Nt have zero-mean and variance σ2
N

. Following, the θt have to be as-
signed to their lags τt with

τt = Xt − Xt−1 , t = 1,...,T . (4.5)

Now, the magnitude φ of autocorrelation at lag τ = 1 can be determined by aver-
aging over the number M of θt with corresponding τt = 1:

φ =
1

M

M∑
i=1

θi(τi = 1) . (4.6)

The mean autocorrelation function (from≈ 259200 time series) CorrNt Nt−τ of water
vapour noise Nt for lags τ from one to six months is shown in Fig. 4.1 as a blue
line together with the standard deviation (magenta). As can be seen, the autocor-
relation function is fast decreasing, thus the consideration of autocorrelation at lag
one is quite convincing.

The aim of the above calculations concerning autocorrelations is to account for
them during the fitting procedure. This is performed by a linear matrix transforma-
tion. Making the connection to the autoregressive process of Eq. (4.2), the model
has absorbed the autocorrelations of Nt into the transformed data Y ∗

t
, C∗

t
(which is
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Figure 4.1: Mean autocorrelation function (blue) of water vapour noise Nt , to-
gether with the standard deviation (magenta).

no more constant), the time X ∗
t

and the step function U∗
t
, whereas the Nt have lost

their autocorrelations and have become white noise εt:

Y ∗
t
= μC∗

t
+ωX ∗

t
+δU∗

t
+ εt , t = 0,...,T . (4.7)

Now a linear regression is applied, which can be solved analytically for the least
square estimators �μ, �ω, �δ and their errorsσ�μ, σ �ω, σ�δ. Details of the transformation
and regression are given in the appendix and in Weatherhead et al. (1998).

After the implementation of the autocorrelations into the model and solving the
linear least square equations (where the least square estimator of the trend is de-
noted with �ω) Weatherhead et al. (1998) derive an approximation of the error of
the trend σ �ω:

σ �ω ≈
�

12σN

�
3
2

·
�

1+φ

1−φ ·
1

[1− 3ϑ(1− ϑ)] 1
2

. (4.8)

σ �ω depends on the standard deviation σN of the noise, the length of the time se-
ries �, the autocorrelation φ of Nt and the fraction ϑ = T0/T , which describes the
position of the level shift. This approximation of the error has also been applied
and compared with the non-approximated errors (Eq. C.11), which is shown as a
scatter-plot in Fig. 4.2. The approximated trend error in Fig. 4.2 is underestimat-
ing the non-approximated errors and the mean relative difference is of the order
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Figure 4.2: The errors of the trends using the assumption of Eq. 4.8 are plotted
against the non-approximated errors derived in the appendix (Eq. C.11).

of 80%, thus it is not recommended to use the approximation for the water va-
pour data. Therefore, the errors of the trends have been calculated using Eq. C.11.
However, the general dependencies of Eq. 4.8 are still valid.

4.1.2 Global trend patterns

The global trend patterns are determined from the long-term time series from Jan-
uary 1996 to December 2007 including GOME and SCIAMACHY globally gridded
monthly mean data on a 0.5◦ × 0.5◦ grid. Two ways of investigating the trends
are informative; on the one hand displaying the absolute trends �ω in g/cm2 per
year (Fig. 4.3) and on the other hand displaying the relative trends �ω/�μ in % per
year (Fig. 4.4), where �μ represents the deseasonalised water vapour columns at the
beginning of the time series. The absolute trends shown in Fig. 4.3 are stronger
near the equator and smaller near the poles. Bluish as well as yellowish and red-
dish patches are seen, thus there are negative as well as positive trends observed,
however most trends are small and distributed around zero. For the relative trends
the situations is inverted and we find larger relative trends at the poles than at
the equator, because the relative trends are normalised to the respective columns,
which are small at the poles and large at the equator.
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Figure 4.3: Global absolute water vapour trends.

4.2 Significance of trends

One main question concerning trends is whether the trend is significant or not.
The answer to this question can only be given in a probabilistic sense. Here, the
frequentists strategy is followed to estimate the significance of the trends.

Based on the null-hypothesis that the observed trend is equal to zero H0 : �ω = 0
the alternative hypothesis is the observation of a non-zero trend H1 : �ω �= 0. The
least square method assumes Gaussian distributed data around the fitted function.
Using standard rules of random variables it can be shown that the trend ω is a
linear function of the data Yt (cf. App. A) and therefore also Gaussian distributed
(Fahrmeir et al., 2004). If it would turn out, that the probability of the data given
the nullhypothesis P(D|H0) is < 0.05, than the chance of making an error in reject-
ing the null hypothesis is 5%. Accordingly, the likelihood to be correct in confiding
the alternative hypothesis is 95%, which does not mean, that the hypothesis is true
with 95%. Actually a Student’s t-test has to be used, because the error of the trend
is not known and has to be estimated. However if the parameters are estimated
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Figure 4.4: Global relative water vapour trends.

from populations of more than 30 data points the t-test can be substituted by the
Gauss-test (Fahrmeir et al., 2004), which is done here. The difference between
the Gauss-test and t-test is simply, that the probability of the test statistic (which
is the same for both methods) has to be looked up in the Gauss distribution or in
the Student distribution, respectively. Figure 4.5 shows the results of the signifi-
cance analysis, where the probability of the data given the nullhypothesis P(D|H0)

is totally determined by the trend ω divided by its error σω. This is also the test
statistic (cf. App. B), where it has to be noted, that the error of the trend has to
be understood as the error of a mean value, hence it scales amongst others with
the number of observations as can be seen in Eq. 4.8. The curve in Fig. 4.5 is
not a continuous line, it is rather composed of 259200 points. Furthermore the
red lines indicate significant trends, where P(D|H0) < 0.05, and this is exactly at
|ω|/σω > 2. Thus, the criterion for a statistically significant trend on a 95% con-
fidence level is given by the claim that the absolute value of the trend has to be
greater than two times its error, which is the famous and widely used standard cri-
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Figure 4.5: Probability of the data given the nullhypothesis P(D|H0) with H0 : �ω=

0 and ω is the water vapour trend.

terion. Figure 4.6 depicts only the statistically significant trends, estimated using
the frequentist statistics. In addition the significance criterion is extended by the
claim, that the time series have to contain at minimum 2/3 of the maximum data
points and this additional criterion is denoted with � ≥ 2/3T , where � is the num-
ber of data points of a specific time series and T is the number of maximum data
points. The data comprise 12 years of monthly averaged values, yielding T = 144
and � ≥ 96. The 2/3 criterion is mainly affecting the data at the poles, where
only measurements during summer are possible. Thus a few time series are not
considered, where very sparse measurements are available. The significant trends
are mainly strong absolute or strong relative trends. However, it is interesting that
also small absolute (e.g. Antarctica) or small relative trends (e.g. Amazonia) can be
significant. For instance, significantly increasing water vapour columns are found
in Greenland, East Europe, Siberia and Oceania. Significant water vapour decrease
is observed in the northwest USA, Central America, Amazonia, Central Africa and
the Arabian Peninsula.

4.3 Global trend

The main result of the presented trend study is the finding of a global patchy dis-
tributed structure of positive and negative water vapour trends during the time
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Figure 4.6: Statistically significant trends.

span 1996 to 2007. These results have been made possible due to the two satellite
spectrometers GOME and SCIAMACHY, which provide global water vapour mea-
surements at a moderate spatial resolution. But regarding the observed mean
global temperature increase (IPCC, 2007) an important aspect is also the global
mean development of atmospheric water vapour, because of its relation to temper-
ature (Held and Soden, 2000). Therefore the trend analysis is applied to a time
series of deseasonalised globally averaged monthly mean water vapour columns
for the time span from 1996 to 2007. During this time a strong ENSO (El Niño
Southern Oscillation) event took place (1997/1998). El Niño is a natural recurring
(without a constant period) climate phenomenon mostly (but not solely) impacting
the tropics. With respect to atmospheric water vapour the connection is performed
through increasing and decreasing (depending on geolocation) surface tempera-
tures, which cause increase and decrease of evaporation. The influence of the large
El Niño event in 1997/1998 on the water vapour columns is shown in Wagner et al.
(2005). Also sea surface temperature is influenced by El Niño, but trend studies
by Good et al. (2007) showed, that El Niño is not influencing the trends signif-
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icantly for a 20 years data record, which is a great advantage of long data sets.
The GOME/SCIAMACHY data used in this study comprise only 12 years, thus the
impact of El Niño on the calculated trends has to be investigated.

After the strong 1997/1998 El Niño, two small El Niño events took place in 2002
and 2006. Figure 4.7 shows the sea surface temperature (SST) anomalies (red)
and the GOME/SCIAMACHY water vapour total column anomalies (blue) for the
area from 4◦N to 4◦S and 150◦W to 90◦W, which are both smoothed by a 5 months
running mean filter. The El Niño event in 1997/1998 exceeds the other events by a
factor of about 3. This strong coupling of the near-surface temperature anomalies
with the water vapour total column anomalies is also shown in Wagner et al. (2006)
for GOME measurements.

Figure 4.7: Monthly mean sea surface temperature (SST) anomalies (red) and
GOME/SCIAMACHY water vapour total column anomalies (blue) averaged for
the area 4◦N to 4◦S and 150◦W to 90◦W and both smoothed by a 5 months run-
ning mean filter. SST Data taken from �����������	
�	�

������
	����

As can be seen from Fig. 4.7 the two El Niño events in 2002 and 2006 are small
compared to the El Niño in 1997/1998. Here, it can be benefited from the consid-
eration of the autocorrelation during the fit routine (cf. Sect. 4.1.1), because the
change in water vapour, possibly caused by an El Niño event, changes the autocor-
relation of the data. For instance increasing water vapour columns over a limited
time yield to systematics in the noise and therefore to increasing autocorrelation
which yields to a higher error σ �ω of the trend, because autocorrelations are consid-
ered in Eqs. (4.7) and (4.8). Hence it is not necessary to remove small events such
as 2002 and 2006.
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4.3.1 Globally averaged water vapour trend

When accumulating spatial measurements, which are gridded on a cylindrical equi-
distant projection (also known as Plate Carée), which is used in this study, a
weighted mean has to be used, where the weights are given by the cosine of the
latitude of each grid point, to account for the different surface areas. The deseason-
alised globally averaged monthly mean water vapour columns are shown in Fig. 4.8
as blue filled circles connected with lines. The red line in Fig. 4.8, corresponding

Figure 4.8: Time series of deseasonalised spatially averaged monthly means of the
entire globe with the trend (red line) regarding autocorrelations.

to the fit parameter �ω, shows an increase of 0.0042g/cm2±0.0024g/cm2 per year,
i.e. 0.29% per year related to the fitted parameter �μ = 1.46g/cm2. This trend is
non-significant in the strict sense, where |ω| > 2σω is required, but it is nearly
significant. The error is strongly increased due to high autocorrelation of �φ = 0.68,
which can be seen from Eq. (4.8).

One reason for the high autocorrelation is the presence of high water vapour
column amounts around the year 1998, which are most likely caused by the El
Niño event. These higher columns are also reported by Wagner et al. (2005) for
water vapour retrieved from GOME data by a different algorithm.

4.3.2 Influence of El Niño 1997/1998 on the global trend

As stated above the 1997/1998 El Niño event is most likely influencing the trend in
Fig. 4.8, and probably data obtained during the El Niño time have to be removed



4.3 GLOBAL TREND 47

as a kind of recurring phenomenon. Otherwise it is not clear if El Niño can be
totally separated from the trend, because it cannot be excluded that for instance
due to an increasing water vapour trend the magnitude of the El Niño is increased.
Nevertheless, the strong 1997/1998 El Niño is identified in the time series and the
corresponding data are removed to quantify the effect on the trends, especially on
the significance of the trends. The influence of the 1997/1998 El Niño is shown in
Fig. 4.9, where the months are plotted against the years and the globally averaged
deseasonalised water vapour column amounts are coded with colours. As can be

Figure 4.9: Time series of months plotted against years, while the deseasonalised
globally averaged water vapour column amounts are coded with colours.

seen from Fig. 4.9, high water vapour columns are observed from September 1997
until March 1999. Accordingly, the global trend analysis is performed again with
the data set where the potentially El Niño influenced data have been removed. Fig-
ure 4.10 shows the patterns of the significant trends. Red colour indicates, that here
only the complete data give significant trends. Blue colour depicts areas, where
only the data with removed El Niño time span (from September 1997 to March
1999) give significant trends. Finally green colour presents locations where both
data sets, with and without the El Niño time span, give significant trends. Mostly
green patterns are found in Fig. 4.10, which means, that in both cases (with and
without El Niño) significant trends are observed, thus removing the potentially El
Niño influenced data is not really needed for the data set, which is most satisfiable,
because removement of data is often critical. However, for single time series, such
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Figure 4.10: Patterns of significant trends from only the complete data (red), only
the data with removed El Niño period from September 1997 to March 1999
(blue) and collocating significant trends from both (green).

as the globally averaged data, the El Niño influence can be crucial and removing of
data points may be required.

Figure 4.11 depicts the deseasonalised spatially averaged monthly mean column
amounts of the data with the El Niño event removed. The trend (red line) yields
0.0040g/cm2± 0.00009g/cm2 per year or 0.28% per year thus the trend is highly
significant with �ω> 44σ �ω. Comparing Figs. 4.8 and 4.11 the trends are in principle
not influenced by the El Niño data, but the errors of the trends are extremely
susceptible to the El Niño data. Without the data of the El Niño time span, the
autocorrelation is reduced to φ = 0.24. Thus, these finding again supports the
importance of implementing the autocorrelations into the regression formalism.

4.3.3 Water vapour correlation with temperature - Granger

causality

The strong correlation between water vapour and temperature has been shown by
Wagner et al. (2006) for globally averaged monthly means of GOME water vapour
and temperature measurements.

This also applies to the combined globally averaged GOME/SCIAMACHY data
set. Figure 4.12 shows the GOME/SCIAMACHY monthly data from 1996 to 2005
together with the globally averaged GISS (Goddard Institute of Space Studies) sur-
face temperature data (Hansen and Lebedeff, 1992). The GISS data set is based
on the Global Historical Climatology Network (GHCN), which comprises 7280 sta-
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Figure 4.11: Time series (with removed El Niño measurements) of deseasonalised
spatially averaged monthly means of the entire globe with the trend (red line)
regarding autocorrelations.

tions, the United States Historical Climatology Network (USHCN) with more than
1000 stations and the Scientific Committee on Antarctic Research (SCAR) with sta-
tions in Antarctica. A visual inspection of the two time series makes clear, that
the two sets of data are correlated and both are strongly influenced by the strong
El Niño in 1997/1998. Moreover, it seems to be, that the water vapour (blue)
is slightly ahead the temperature. To verify this impression the cross correlation
function of the two variables is calculated, which is shown in Fig. 4.13. The cross
correlation function shows high correlations in both directions with small positive
and negative lags τ. According to Granger (2001) such an observation could be an
evidence for a feedback system.

Granger (1969) developed a statistical concept called Granger causality. Granger
causality means, that a signal X “Granger causes” (or “G-causes”) a signal Y , if the
values of X can be better predicted using past information not only from X itself,
but also from Y . The use of such statistical methods in the context of prediction
must be used with great care. Granger causality does not mean causal in the strict
sense, especially, when not all possibilities are investigated. Therefore the results
from the analysis of the Granger causality regarding water vapour and tempera-
ture should not be overemphasised. For instance Triacca (2005) showed, that the
Granger causality analysis was not able to find significant results of the relationship
between atmospheric carbon dioxide and temperature. However, in this approach
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Figure 4.12: Globally averaged water vapour (blue) and temperature (red) data.
The strong positive correlation can be seen clearly, especially around 1998 during
the strong El Niño event.

the works from Kaufmann and Stern (1997) are followed, who found, that the
Earth’s southern hemispheric temperature G-causes the northern hemispheric tem-
perature. The model, which describes the water vapour data is given by:

Wt = μ1 +ω1Xt +

s∑
i=1

ϕ1iWt−i +

s∑
i=1

γ1i Tt−i + ε1t , (4.9)

where the Wt are globally averaged deseasonalised and level shift corrected monthly
mean water vapour columns. The temperature data are given by:

Tt = μ2 +ω2Xt +

s∑
i=1

ϕ2iWt−i +

s∑
i=1

γ2i Tt−i + ε2t , (4.10)

where Xt is the time, ε j t are iid (independent and identically distributed) error
terms and μ j, ω j, ϕ ji and γ ji are the regression coefficients. The length of the
maximum lag s is a crucial point and a good way would be to perform a Bayesian
model selection. In the context of Granger causality several methods have been
proposed to find the best lag length (Thornton and Batten, 1984) e.g. the Bayesian
Information Criterion (BIC) also called Schwarz Information Criterion (SIC) after
Schwarz (1978). The BIC is calculated in the following way:

BICj(k) = n · ln(RSSj/n) + k · ln(n) , (4.11)

where n is the number of data points (in this case 120 minus the respective lags),
RSS is the sum of squared residuals between the data and the model and k is the
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Figure 4.13: Cross correlation function of water vapour and temperature. The
water vapour data are shifted with lags τ against the temperature data. High
correlations are observed at small positive and negative lags τ.

number of regression coefficients. Thus, the BIC is an increasing function of the
RSS and k, but these are coupled in opposite directions, i.e. increasing the parame-
ters k decreases the RSS. Accordingly the minimum of the BIC for different param-
eters k is a compromise between small residuals and few parameters. A minimum
is found at lag 1 for the sum of the BIC’s from water vapour and temperature, but
this function has also small values at lags 2,3 and 4. Therefore, instead of choosing
only the optimal lag length (in the sense of the BIC), several lag lengths are used,
which makes it possible to see the strong influence of this quantity.

Water vapour not G-causes temperature, if the ϕ2i = 0 and temperature not G-
causes water vapour, if the γ1i = 0. If this is true for both, then no Granger causality
exists. According to Kaufmann and Stern (1997) the significance of the Granger
causality can be tested using a F-test with the test statistic:

wj =
(RSSr − RSSu)/q

RSSu/(n− k)
. (4.12)

RSSu is the sum of squared residuals of the unrestricted models Eq. 4.9 and 4.10,
RSSr represents the sum of squared residuals of the restricted models, where in
Eq. 4.9 the γ1i are set to zero and in Eq. 4.10 the ϕ2i are set to zero. q is the
number of coefficients restricted to zero, n is the number of data points and k

denotes the number of regression coefficients in the unrestricted model. Strictly
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speaking: If the sum of the squared residuals ε1t in Eq. 4.9 is significantly reduced
through adding the information from the temperature, than the temperature G-
causes the water vapour. And if the sum of squared residuals ε2t in Eq. 4.10 is
significantly reduced through adding the information from the water vapour, than
the water vapour G-causes the temperature.

As said above the differences in the sums of the BIC’s at lags 1,2,3 and 4 are quite
small, hence these lags are used to estimate the significance for Granger causality.
The results are shown in Tab. 4.1. The p-value, in this case, denotes the proba-

lag s w1 p1 w2 p2

1 3.86 0.024 3.84 0.024
2 1.31 0.275 2.55 0.059
3 1.55 0.192 1.62 0.175
4 1.05 0.391 1.64 0.157

Table 4.1: Results from the analysis of Granger causality with water vapour and
temperature. For different lags, the test statistic wj and their pj-values are dis-
played. Small pj-values indicate, that temperature is G-caused by water vapour
( j = 1) and vice versa ( j = 2).

bility that the difference RSSr − RSSu is equal zero, which means that no Granger
causality exists. Regarding Tab. 4.1 the p-values are generally low, which supports
the hypothesis of existing Granger causality. Especially for lag 1, both, water va-
pour G-causes temperature significantly and temperature G-causes water vapour
significantly on a 95% confidence interval. Such bidirectional Granger causality is
a sign for a feedback system (Granger, 2001), which has also been insinuated by
the cross correlation function (Fig. 4.13). Using higher lags than 1, the significance
for Granger causality is above the 5% level, however still low. In these cases the
probabilities, that water vapour is G-caused by temperature are higher.

Concluding, using AMC-DOAS water vapour data and the GISS temperature data
set, Granger causality is observed and temperature and water vapour are identified
as a feedback system, which is in line with the understanding of atmospheric pro-
cesses. This finding supports the high quality of the data. As mentioned above, the
results from the Granger causality analysis should not be overemphasised. However
this analysis supports the hypothesis that the feedback mechanism of temperature
and water vapour is actually in full operation. It could be possible, that this mech-
anism may not be stopped easily in the near future. Therefore the continuation of
temperature and water vapour (GOME-2) measurements is of utmost importance
to monitor the ongoing climate change.
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5 Comparison of water vapour trends

5.1 Intercomparison of satellite and radiosonde

trends

The comparison of data or quantities such as means and standard deviations is
a common problem in diverse (scientific) areas. Often, quantities are given with
their respective error bars, which define certain confidence levels. If there is no
overlap between the error bars it is commonly stated, that the two parameters
differ significantly, which is not always valid as shown in Lanzante (2005), who
recommends instead to use standard hypothesis testing such as the Gauss-test or
the Student’s t-test (Fahrmeir et al., 2004).

The comparison of parameters or quantities is also extensively discussed under
the Bayesian statistics framework. For instance Bretthorst (1993) and Sivia and
Skilling (2006) compare means and standard deviations of data using Bayesian
model selection.

In the following both approaches are followed, the frequentist and Bayesian
concepts, to compare the water vapour trends derived in Sect. 4 from GOME/-
SCIAMACHY data with independent water vapour trends from radiosonde mea-
surements.

As mentioned in Sect. 2.3.1 the frequentist and Bayesian concepts follow differ-
ent philosophies, although similar problems can be approached. This is also the
case in comparing trends. The frequentist methods can work out the probability of
the data, showing same trends, assuming equal water vapour trends observed from
satellite and ground measurements. This can also be interpreted as estimating the
probability of an effect, assuming a known cause. The Bayesian approach gives
the inverse, the probability of the cause in the case of observing certain effects.
The Bayesian concept estimates the probability that the two sets of data have a
combined trend, which can be interpreted as observing data from the same basic
population. The especial attractiveness of the Bayesian concept lies in the fact, that
it is a real model selection or hypothesis testing, which is also extensively used
in decision theory (e.g. Berger (1993)). In the case of water vapour trends from
two independent instruments only two hypotheses come into consideration, which
are that the trends are equal or unequal. A rigorous application would prefer one
hypothesis over the other, if the probability is larger than 50%. However, Jeffreys
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(1939) proposed a useful scale on the evidence against hypothesis A with respect
to B, which is shown in Tab. 5.1. Regarding Tab. 5.1, P(A) and P(B) denote the re-

log10

�
P(B)

P(A)

	
Evidence against A

0 to 0.5 nothing but a chance
0.5 to 1 substantial
1 to 2 strong
>2 decisive

Table 5.1: Judgement of evidence against hypothesis A regarding Jeffreys (1939)

spective probabilities of the hypotheses and a value of log10(P(B)/P(A)) = 1 means,
that hypothesis B is ten times more probable than hypothesis A.

5.2 The radiosonde water vapour data

Radiosonde water vapour measurements constitute the basis for meteorological
applications and are also the calibration source for e.g. the SSM/I (Special Sensor
Microwave Imager) satellite instrument (see e.g. Andersson et al. (2007)). GOME/-
SCIAMACHY provide an independent data set, therefore the comparison of trends
with independent data from GOME/SCIAMACHY could reveal much insight and
would upgrade the quality of both if agreement would be observed. The com-
parison will be performed with monthly averaged data from both satellites and
radiosondes, which are representative for the respective months. The radiosonde
data are provided by the German Weather Service (DWD) under the framework
of the WMO (World Meteorological Organisation). The data set comprises 908
time series from globally distributed stations. The radiosonde data are originally
available as daily vertical profiles. These have been integrated up to 100hpa and
averaged to monthly means by the DWD. As a quality criterion it is claimed that the
time series have to comprise minimal 2/3 of data points to come into consideration
for the comparison. As in Sect. 4.2 this constraint is used, because time series with
large data gaps may not be representative. The disadvantage of the 2/3 criterion
is that only 187 radiosonde time series fulfil this requirement, whereas the satel-
lite data fulfil the 2/3 criterion in all 908 cases. This elucidates an advantage of
the GOME/SCIAMACHY data, which are in principle continuously available on a
monthly means basis. Nevertheless, the intercomparison is performed with the 187
collocating high quality water vapour time series.

Several differences exist between the two sets of data. The satellite spectro-
meters GOME and SCIAMACHY have a large footprint on Earth of about 40km×
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320km and 30km × 60km, respectively. Hence, they “see” a large area and the
resulting water vapour column is an average over this area. Additionally the data
are gridded on a 0.5◦ × 0.5◦ lattice. Moreover, both satellites, ERS-2 and ENVISAT,
fly on a sun-synchronous orbit, which results in an equator crossing of ERS-2 at
10:30 am and that of ENVISAT at 10:00 am. Thus the GOME/SCIAMACHY time
series represent strictly speaking a snap-shot climatology at a certain time for ev-
ery geolocation. Further on it is a cloud adjusted climatology, because too cloudy
scenes cannot be retrieved by the algorithm (Noël et al., 2004). Thus the data
have to be seen in this context. On the other hand, the radiosonde stations consti-
tute very localised point measurements. When they are compared with the satel-
lite data, the stations lie inbetween the 0.5◦ × 0.5◦ grid points of the respective
GOME/SCIAMACHY footprint. Therefore discrepancies can be well imagined. An
other aspect are the measurement times of the radiosondes, which are typically at
6am, noon, 6pm and also at midnight. Moreover, some stations only provide the
morning data, morning and noon data or any other permutation, thus only repre-
senting a climatology at a certain daily local time. Bias problems of radiosonde
measurements have been reported by e.g. Turner et al. (2003), where peak to peak
differences between radiosondes greater than 25% have been observed.

The discussion on the differences of the two data sets makes clear, that there are
various reasons for discrepancies between the data. However, the comparison of
trends also has an advantage against comparing e.g. the single columns. The trend
should be independent from certain offsets, as long as these are constant over time.
In this context, an excellent or good agreement between collocated water vapour
trends represents an extremely believable verification that the trends are real. On
the other hand a bad agreement does not necessarily mean, that one instrument
is wrongly measuring and the other is right, or that both trends are wrong. Re-
garding the differences between the measurement methods, a disagreement of the
collocated trends could mean, that e.g. the radiosonde captures a very localised
event, which cannot be seen with the satellite.

5.3 Regression analysis of satellite and radiosonde

data

To compare the water vapour trends from GOME/SCIAMACHY and radiosondes
under the framework of frequentist statistics as well as Bayesian statistics the same
trend model as in Sect. 4.1.1 is used. Thus, the GOME/SCIAMACHY data are
described with

D∗1t
= μ1C∗1t

+ω1X ∗1t
+ δU∗

t
+ ε1t , t = 1,...,T1 , (5.1)
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where the ∗ denotes, that the autocorrelations of the noise Nt have been considered.
The monthly mean water vapour columns are described by D∗1t

. The regression pa-
rameters �μ1, �ω1 and �δ have been estimated in a least square sense (cf. Sect. 4.1.1).
Furthermore, the errors of the regression parameters σ�μ1

, σ �ω1
and σ�δ and the er-

ror of the noise σ1 have been determined within the regression procedure. The
trend model for the radiosonde measurements D∗2t

, where also autocorrelations
have been considered is obtained as:

D∗2t
= μ2C∗2t

+ω2X ∗2t
+ ε2t , t = 1,...,T2 , (5.2)

where no level shift is used. In the same way as above, the regression parameters�μ2, �ω2, their errorsσ�μ2
, σ �ω2

and the error of the noise σ2 have been estimated . For
the approximation of the Bayesian method, which is shown in Sect. 5.6, the error of
the noise from the pooled data with a single trend is needed, which can be obtained
by applying the least square regression to the pooled data D∗

pt
= [D∗1t

; D∗2t
].

D∗
pt
= μp1C∗

p1t
+μp2C∗

p2t
+ωpX ∗

pt
+δpU∗

pt
+ εpt , t = 1,...,T1 + T2 , (5.3)

where we have

C∗
p1t

=

�
C∗1t

, t ≤ T1

0, t > T1
, C∗

p2t
=

�
0, t ≤ T1

C∗2t
, t > T1

,

X ∗
pt
=

�
X ∗1t

, t ≤ T1

X ∗2t
, t > T1

, U∗
pt
=

�
U∗

t
, t ≤ T1

0, t > T1
.

(5.4)

Solving the least square regression, the error of the noise

σp1 =

�
1

�1− 3

∑
ε2

p1t , with εp1t = εpt if t ≤ T1 (5.5)

and

σp2 =

�
1

�2− 2

∑
ε2

p2t , with εp2t = εpt if t > T1 (5.6)

under a single trend can be observed. The �i are the respective lengths of data D∗1t

and D∗2t
, which are reduced by the number of fitted parameters.

5.4 Student’s t-test applied to trends

Following the methods in the App. B, the t-test can be applied to trends. The null-
hypothesis H0 : d = ω1 −ω2 = 0 postulates that the difference of the two trends
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is equal zero, whereas the alternative hypothesis is H1 : d = ω1 −ω2 �= 0. The
standard deviation of the difference d is observed as

σd =


σ2�ω1

+σ2�ω2
, (5.7)

(see e.g. Welch (1947)) where σ2�ωi
are the respective variances of the trends �ωi. It

has to be noted, that contrariwise to the derivation in the App. B, the variances of
the trends in Eq. 5.7 have not to be divided by the number of data, because the σ �ωi

are actually the standard errors of the trends, which already depend on the number
of data.

The t-statistic is then given by

t =
d

σd

(5.8)

Accordingly the t-distribution with

f =
σ2�ω1

+σ2�ω2

(σ2�ω1
)2/(�1 − 3) + (σ2�ω2

)2/(�2 − 2)
(5.9)

degrees of freedom (cf. App. B) has to be integrated from |t | to∞. The result has to
be multiplied by the factor two, because no prior information on the sign of d exists,
which requires a two tailed test. Finally the probability of the data given the null-
hypothesis, which is P(D1,D2|H0) is derived. The �i are the respective length of
the time series D∗

i t
and are reduced by the number of fitted parameters, i.e. three for

D∗1t
and two for D∗2t

. The integrals of the t-distribution are typically tabulated in sev-
eral high level programming languages such as Octave (������������	
�����

���������������).

5.5 Bayesian model intercomparison

In the following a Bayesian method to compare trends in time series is presented,
the Bayesian method can give an answer to the question if the trends determined
from different/independent instruments are equal or not. The Bayesian model se-
lection for the difference of trends is based on works of Bretthorst (1993) and Sivia
and Skilling (2006) who estimate the difference of means and standard deviations
between two sets of data. For this study, the method has been extended to compare
trends:

To end this we set up two hypotheses:

A: Both sets have the same (unknown) trend ω.
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B: The two data sets have different (unknown) trends ω1 and ω2.

Note that the magnitudes of the trends do not matter. Hypothesis A is mathemat-
ically formulated with Eq. 5.3, while hypothesis B is described using Eqs. 5.1 and
5.2.

Following App. D we can start and ask for the posterior probability of the hypoth-
esis A, given the respective data using Bayes’ theorem:

P(A|D1,D2, I) =
P(D1,D2|A, I) · P(A|I)

P(D1,D2|I)
, (5.10)

where the D1 and D2 stand for the two data sets, A is the hypothesis and I describes
certain relevant background information.

In the following the procedure from App. D is applied to the model comparison
between the above defined hypotheses A and B. Since the absolute magnitudes of
the parameters p1 = [μp1,μp2,ωp,δp,σp1,σp2] from Eq. 5.3 are irrelevant we can
use the marginalization rule Eq. D.4 and integrate them out

P(A|D1,D2, I) =

∫
dp1 P(D1,D2|A,p1, I) · P(A,p1|I)

P(D1,D2|I)
(5.11)

Assuming logical independence of the prior probabilities of the hypothesis A and
the parameters p we find:

P(A,p1|I) = P(A|I) · P(μp1|I) · P(μp2|I) · P(ωp|I) (5.12)

· P(δp|I) · P(σp1|I) · P(σp2|I) (5.13)

In the same way as in (Eq. 5.11) the posterior for hypothesis B can be derived:

P(B|D1,D2, I) =

∫
dp2 P(D1,D2|B,p2, I) · P(B,p2|I)

P(D1,D2|I)
, (5.14)

with p2 = [μ1,μ2,ω1,ω2,δ,σ1,σ2] from Eqs. 5.1 and 5.2 and

P(B,p2|I) = P(B|I) · P(μ1|I) · P(μ2|I) · P(ω1|I) (5.15)

· P(ω2|I) · P(δ|I) · P(σ1|I) · P(σ2|I) (5.16)

The denominator P(D1,D2|I) is the evidence (cf. Eqs. D.4 and D.5), which is in
this case obtained by:

P(D1,D2|I) = P(D1,D2|A, I) P(A|I) + P(D1,D2|B, I) P(B|I) . (5.17)

P(A|I) is the prior probability that the trends of both sets of data are the same
and because there is no reason to prefer either this hypothesis nor the alternative
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P(B|I) (that the trends are different) we assign both with the probability 0.5, thus
they cancel out in the ratios given in Eqs. 5.11 and 5.14.

The prior probabilities P(p1|I) and P(p2|I) in Eqs. 5.11 and 5.14 can be pulled
out of the integrals if they are independent from the parameters themselves, which
can be realised by choosing them as bounded priors in the form of fully normalised
uniform distributions:

P(pi|I) =
�

1
pi max−pi min

If pi min < pi < pi max

0 otherwise
i = 1, 2 , (5.18)

i.e. it is assumed that all pi in the interval [pi min,pi max] have the same probabil-
ity. All prior probabilities, except the trend priors, occur in the numerator and
denominator of Eqs. 5.11 and 5.14, respectively, thus they cancel out in the ra-
tios. The priors of the pooled trend and the separate trends are chosen equally as
P(ω|I) = P(ωp|I) = P(ω1|I) = P(ω2|I) with

P(ω|I) =
�

1
ωmax−ωmin

If ωmin ≤ω ≤ωmax

0 otherwise
. (5.19)

These prior information constitutes the framework of the probabilistic analysis
and interpretation of the results. If the range of possible trends is increased, larger
differences of trends are probable and vice versa. Therefore the argumentation
on the differing trends depends on the choice of the trend boundaries. Luckily, it
can be benefitted from the trend study (Sect. 4.1.1), which gives information on
the range of the trends. The boundaries for the three trend priors in Eq. 5.19 are
chosen as ωmin = −0.1g/cm2 per year and ωmax = +0.1g/cm2 per year. These
priors comprise more than 99.9% of all water vapour trends for the time span
1996 to 2007 (cf. Fig. 4.3), thus the probability space is not truncated and it is also
not unrealisticly large chosen. Finally, also one trend prior cancels out in each of
the ratios of Eqs. 5.11 and 5.14.

The only remaining quantities are the two likelihood functions, where the two
data sets D1 and D2 from radiosonde and satellite measurements are completely
independent:

P(D1,D2|A,p1, I) = P(D1|A,μp1,ωp,δp,σp1, I) P(D2|A,μp2,ωp,σp2, I) (5.20)

and

P(D1,D2|B,p2, I) = P(D1|B,μ1,ω1,δ,σ1, I) P(D2|B,μ2,ω2,σ2, I) . (5.21)
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A Gaussian likelihood is assumed such that the noise ε1t , ε2t and εpt are normally
distributed. The D1 comprise �1 independent measurements {D1t} and the D2

comprise �2 independent measurements {D2t}, which leads to

P(D1,D2|A,p1, I) = (5.22)

σp1

�
2π
�−�1 exp

⎡⎣− 1

2σ2
p1

T1∑
t=1

(D1t −μp1C1t −ωpX1t −δpUt)
2

⎤⎦
·


σp2

�
2π
�−�2 exp

⎡⎣− 1

2σ2
p2

T2∑
t=1

(D2t −μp2C2t −ωpX2t)
2

⎤⎦
and

P(D1,D2|B,p2, I) = (5.23)

σ1

�
2π
�−�1 exp

⎡⎣− 1

2σ2
1

T1∑
t=1

(D1t −μ1C1t −ω1X1t − δUt)
2

⎤⎦
·


σ2

�
2π
�−�2 exp

⎡⎣− 1

2σ2
2

T2∑
t=1

(D2t −μ2C2t −ω2X2t)
2

⎤⎦ ,

where the ∗’s have been dropped due to simplicity, but still the transformed data
are meant (cf. Sect. 5.3).

Due to the equality of the priors and the normalisation, the analysis simplifies to:

P(A|D1,D2, I) =

∫
dp1 P(D1,D2|A,p1, I)

P(D1,D2|I)
(5.24)

and

P(B|D1,D2, I) =
P(ω|I) ·

∫
dp2 P(D1,D2|B,p2, I)

P(D1,D2|I)
, (5.25)

The final posterior probabilities Eqs. 5.24 and 5.25 constitute highly complex func-
tion comprising products of more than 200 Gaussians, which have to be inte-
grated over six and seven dimensions, respectively. Such multidimensional, com-
plex probability density distributions have extremely small “peaks” and are ex-
ceedingly “steep”, comparable to needles in a haystack, as stated colourful by Liu
(2003). This means, that standard quadrature and even standard Monte Carlo in-
tegration algorithms are not sufficient to solve these integrals. Therefore a Markov
Chain Monte Carlo (MCMC) method is used for integration (comprehensive infor-
mation can be found e.g. in Gilks et al. (1995) and Robert and Casella (2005)),
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where the algorithm Differential Evolution Markov Chain (DEMC) explained by
Braak (2006) has been implemented. Two factors essentially determine the preci-
sion of the method, which are the burn in phase (bip), i.e. the time the algorithm
needs to work correctly and the number of samples (nos). These parameters are
adjusted to achieve a precision of ≈ 0.01 with bip = 105 and nos = 105, which con-
stitutes an extensive computational effort. In the case of the 187 pairs of time series,
this computation can be performed on a standard PC, but if e.g. two satellite data
sets with more than 200000 pairs of time series have to be analysed, standard PC’s
are insufficient. Therefore, an analytical approximation of the Bayesian method is
shown in the next section, which can be applied to large data sets on standard PC’s.

5.6 Analytical approximation

DEMC is a sophisticated and powerful algorithm which is far beyond what is im-
plemented in standard computational programming languages or packages. The
disadvantage of DEMC is the large need of computational power. Sivia and Skilling
(2006) derive an approximation for a Bayesian method, which compares means
and standard deviations of data. This approximation can be adopted to the here
presented method for trend comparison, which is shown in the following.

Using a quadratic Taylor series expansion of the logarithm of A’s likelihood func-
tion Eq. 5.20:

LA = LA(�p1)−
1

2
K ′

A
HA KA+ · · · (5.26)

where LA = loge[P(D1|A,μp1,ωp,δp,σp1, I) P(D2|A,μp2,ωp,σp2, I)] with a maxi-
mum at �p1 = [�μp1, �μp2, �ωp, �δp, �σp1, �σp2]. The parameters �p1 are determined by the
first partial derivatives ∂ LA/∂ p1 = 0, which results exactly in solving a set of linear
equations in a least square sense. Thus we can use the parameters �p1 estimated in
Sect. 5.3.

The second term in Eq. 5.26 contains the vector K ′
A
= p1 − �p1, which is shown

explicitly in App. F. The entries of the 6×6 matrix HA in Eq. 5.26 are derived from
the second partial derivatives of LA evaluated at �p1 which is shown in App. F.

Now we can calculate the approximated likelihood of hypothesis A exponentiat-
ing LA, which is

PApprox(D1,D2|A, I) =

∫
dp1 exp(LA) (5.27)

=

∫
dp1 exp

�
L(�p1)

� · exp
�
−1

2
K ′

A
HA KA

�
(5.28)
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The first exponential in Eq. 5.28 is a constant and the second is a six dimensional
Gaussian. Sivia and Skilling (2006) show how to integrate a M− dimensional
Gaussian by:

Z =

∫
exp
�
−1

2
x′Hx

�
dMx (5.29)

=
(2π)M/2�

det(H)
,

thus Eq. 5.28 becomes:

PApprox(D1,D2|A, I) = exp
�

L(�p1)
� (2π)6/2�

det
�
HA

� . (5.30)

We finally find:

PApprox(D1,D2|A, I) = (5.31)
�σp1

�
2π
�−�1 
�σp2

�
2π
�−�2 exp

�
−(�1 + �2 − 5)

2

�
(2π)6/2�
det
�
HA

�
Now we have to determine the alternative hypothesis B, that the time series

have different trends ω1 and ω2. The procedure is in principle identical to the
above derivations, using the quadratic Taylor series expansion of the logarithm of
B’s likelihood function Eq. 5.21

LB = LB(�p2)−
1

2
K ′

B
HB KB + · · · . (5.32)

The quantities �p2, K ′
B

and HB are given in App. F. Accordingly we find

PApprox(D1,D2|B, I) = (5.33)
�σ1

�
2π
�−�1 
�σ2

�
2π
�−�2 exp

�
−(�1 + �2− 5)

2

�
(2π)7/2�
det
�
HB

� .

Finally the posterior probabilities have to be normalised. Because

PApprox(A|D1,D2, I) + PApprox(B|D1,D2, I) = 1 (5.34)

with the evidence

PApprox(D1,D2|I) = PApprox(D1,D2|A, I) + PApprox(D1,D2|B, I) (5.35)
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we get

PApprox(A|D1,D2, I) =
PApprox(D1,D2|A, I)

PApprox(D1,D2|I)
(5.36)

and

PApprox(B|D1,D2, I) =
PApprox(D1,D2|B, I) · P(ω|I)

PApprox(D1,D2|I)
. (5.37)

After normalisation all terms occurring in both Eons. 5.36 and 5.37 cancel out in
the ratios, thus we have:

PApprox(D1,D2|A, I) =
(2π)6/2

�σ�1p1 �σ�2p2

�
det
�
HA

� (5.38)

and

PApprox(D1,D2|B, I) =
(2π)7/2

�σ�11 �σ�22

�
det
�
HB

� . (5.39)

The posterior probability of hypothesis B is also proportional to the prior proba-
bility of the trends, which is chosen in the same way as in Eq. 5.19.

The analytical approximations of the posteriors can easily be applied to existing
time series and are perfectly suited for analysing large data sets of 100000s of time
series, which can be processed within minutes on a standard PC.

5.7 Application to water vapour

The presented intercomparison methods for trends in time series, i.e. the t-test and
the Bayesian model selection, have been applied to existing trends from satellite
and radiosonde measurements. To simplify matters in the following, it will be re-
ferred to “agreement” of trends, but actually the respective probabilities P(D1,D2

|H0) (t-test) and P(A|D1,D2) (Bayes) are meant. As described in Sect. 5.2 a great
advantage is the independence of the data from two different sources. The trends
have been calculated using the methods described in Sect. 4.1.1. For the inter-
comparison a quality criterion is required, i.e. both time series have to contain at
minimum 2/3 monthly mean measurements over the time span from January 1996
to December 2007, i.e. at least 96 data points from maximal 144. The advantage
of this constraint is, that it assures that the trends are representative for the inves-
tigated time span and less susceptible to possible outliers.



64 5 COMPARISON OF WATER VAPOUR TRENDS

(a) t-test applied to trends. Likelihood vs. dif-
ference of trends.

(b) t-test applied to trends. Likelihood vs. dif-
ference of trends normalised to the error of the
difference.

(c) Bayesian method applied to trends. Exact
posterior probability vs. difference of trends.

(d) Bayesian method applied to trends. Exact
posterior probability vs. difference of trends
normalised to the error of the difference.

(e) Bayesian method applied to trends. Ap-
prox. posterior probability vs. difference of
trends.

(f) Bayesian method applied to trends. Ap-
prox. posterior probability vs. difference of
trends normalised to the error of the differ-
ence.

Figure 5.1: 187 probabilities of agreement between pairs of water vapour trends
from GOME/SCIAMACHY and radiosonde data are plotted against the respective
trend differences and against the trend differences divided by the error of the
differences: (a) and (b) using the t-test, (c) and (d) applying the exact Bayesian
method and (e) and (f) performing the approximated Bayesian approach.
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Figure 5.1(a) depicts the results from the t-test: The likelihoods of the 187 trend
pairs are plotted versus the difference of the trends and high probabilities are ob-
served for small trend differences, while lower probabilities are found for large
trend differences. Figure 5.1(b) shows the likelihoods plotted against the trend dif-
ferences normalised to the standard deviation of the difference. From the definition
of the t-test it is clear, that the probability P(D1,D2|H0) is totally determined by
(ω1−ω2)/σd , were ω1 is the radiosonde trend and ω2 is the GOME/SCIAMACHY
trend. In the sense of the frequentist interpretation, statistical significance will
be stated at the 95% confidence level. This means, that the null-hypothesis is
rejected if P(D1,D2|H0) < 0.05, which is true in 20 cases and it is accepted if
P(D1,D2|H0) > 0.95, which is true in 8 cases out of 187. Furthermore, the prob-
abilities are quite equally distributed with about nine data points on average in
each 0.05 probability interval. Thus, concluding it can neither be stated that the
trends generally disagree nor that they do agree systematically. In the sense of the
frequentist significance interpretation 159 trend comparisons, i.e. 85%, give non-
significant results.

The 187 probabilities of agreement from the exact Bayesian model selection, for
each trend pair, are plotted in Fig. 5.1(c) versus the difference of the trends and in
Fig. 5.1(d) versus the trend difference normalised to the standard deviation of the
trends (as above), (ω1 −ω2)/σd . Additionally the results from the approximation
of the Bayesian method are shown in Figs. 5.1(e) and 5.1(f). High probabilities of
agreement are found for small trend differences, whereas the probability is low for
large trend deviations as in the case of the t-test. The approximation slightly over-
estimates the exact probabilities and the mean relative difference is in the order
of 10%, but the general results from the exact method and the approximation are
very similar, thus the use of the approximation can be recommended for monthly
mean water vapour trend comparison, if sophisticated algorithms like DEMC are
not available, large computational capacities are not accessible or large data sets
have to be analysed in few time. Regarding Jeffreys’ scale (Tab. 5.1 the evidence
against hypothesis B is substantial if the logarithm of the Bayes factor, which is
here P(D1,D2|A, I)/(P(D1,D2|B, I) · P(ω|I)), is larger 0.5 and smaller 1, which
corresponds to 0.76 < P(A|D1,D2, I) < 0.91, hence the evidence against hypothe-
sis A is substantial if 0.09 < P(A|D1,D2, I) < 0.24. Thus hypothesis A is preferred
substantially in 49 cases and B in 9 cases, using the exact method. The approxima-
tion substantially prefers A in 114 cases and B in 5 cases. The evidence against B is
strong to decisive if P(A|D1,D2, I)> 0.91, which is true in zero cases for the exact
solution and true in 10 cases for the approximation. Strong to decisive evidence is
drawn against A if P(A|D1,D2, I) < 0.09, which is observed three times in the ex-
act case and two times in the case of the approximation. The rigorous application
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of the Bayesian model selection would prefer hypothesis A if P(A|D1,D2, I) > 0.5,
which is true in 153 cases from 187, i.e. 82% for the exact method, and in 165
cases for the approximation.

Interpreting the observed patterns in Figs. 5.1(c) to 5.1(f), distinct clusters of
data points are found between probabilities of 0.7 to 0.9. These are mostly classi-
fied as substantially supporting hypothesis A of a combined underlying trend.

In the following, examples GOME/SCIAMACHY and radiosonde water vapour
time series are analysed.

(a) GOME/SCIAMACHY deseasonalised data
(blue) and radiosonde data (red).

(b) Pooled GOME/SCIAMACHY and ra-
diosonde water vapour data.

Figure 5.2: Examples of GOME/SCIAMACHY and radiosonde water vapour time
series at Nottingham, England.

Fig. 5.2(a) shows the deseasonalised GOME/SCIAMACHY and radiosonde monthly
mean water vapour columns together with their linear trends from Nottingham in
England. For visual presentation the GOME/SCIAMACHY level shift has been re-
moved. The human visual system is quite sophisticated in the identification of
diverse patterns and also in comparing trends. From Fig.5.2(a) it is clear, that
the trend difference is small and indeed the trends are quite equal with ω1−ω2 =

0.001g/cm2 per year and (ω1−ω2)/σd = 0.14 (cf. Fig. 5.1). The t-test gives a prob-
ability of the data under the assumption of equal trends of P(D1,D2|H0) = 0.89.

The Bayesian hypothesis B is visualised schematically by Fig. 5.2(a) by modelling
the data with two trends. Hypothesis A is illustratively shown in Fig. 5.2(b) by
pooling the data and applying a single trend. For visual presentation the offsets of
GOME/SCIAMACHY and radiosonde data have been removed. From the Bayesian
point of view hypothesis A is substantially preferred with P(A|D1,D2, I) = 0.82.
The approximative method gives PApprox(A|D1,D2, I) = 0.90. Hence, for small
trend differences, both, the frequentist and Bayesian concept reveal high probabili-
ties of agreement.
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Low probabilities of agreement are found e.g. at Albany Airport in Australia.
The time series are shown in Fig. 5.3. The visual inspection definitely classifies the
trends as different. The trend difference is actually ω1−ω2 = 0.04g/cm2 per year
and after normalisation it is (ω1 − ω2)/σd = 3.2. The t-test gives a probability
of P(D1,D2|H0) = 0.002, the exact Bayesian finds P(A|D1,D2, I) = 0.02 and
the approximation yields PApprox(A|D1,D2, I) = 0.04. Thus, low probabilities are
found for large trend differences by both statistical methods.

(a) GOME/SCIAMACHY deseasonalised data
(blue) and radiosonde data (red).

(b) Pooled GOME/SCIAMACHY and ra-
diosonde water vapour data.

Figure 5.3: Examples of GOME/SCIAMACHY and radiosonde water vapour time
series at Albany Airport, Australia.

The decisive differences, as can be seen from Fig. 5.1, happen in the range be-
tween small and large trend differences. As an example, a pair of water vapour time
series from Meiningen, Germany is chosen with a trend difference of ω1 −ω2 =

0.014g/cm2 per year and a normalised trend difference of (ω1 −ω2)/σd = 1.3.

(a) GOME/SCIAMACHY deseasonalised data
(blue) and radiosonde data (red).

(b) Pooled GOME/SCIAMACHY and ra-
diosonde water vapour data.

Figure 5.4: Examples of GOME/SCIAMACHY and radiosonde water vapour time
series at Meiningen, Germany.
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The probability for equal trends from the t-test yields P(D1,D2|H0) = 0.19,
whereas the exact Bayesian gives P(A|D1,D2, I) = 0.89 and the approximation is
PApprox(A|D1,D2, I) = 0.75. Here it has again to be mentioned, that both methods
(t-test/Bayes) reveal different probabilities, thus they complement each other and
are both correct under the given framework of the frequentist philosophy and the
Bayesian concept. As can be seen from Fig. 5.4(a) also a visual inspection would
classify the trends more different than equal, which is also reproduced by the t-test.
Pooling the data, as shown in Fig. 5.4(b) makes the strong correlation between
both time series clearly visible, thus the accuracy of the satellite and radiosonde
measurements is strongly supported. In this sense, both methods, the t-test and
the Bayesian model selection complement each other. The t-test states, that the
individual time series have different trends. The Bayesian model selection gives a
high probability, that both time series have a combined trend. As mentioned above
this is no contradiction, because different probabilities are estimated.

The GOME/SCIAMACHY trends are plotted in Fig. 5.5, where the 187 radiosonde
trends have been embedded into the figure indicated by black, grey and white bor-
dered circles. The circles of radiosonde trends are filled with the colour for the
magnitude of the respective trends according to the colour bar used also for the
GOME/SCIAMACHY data. Thus, from a visual inspection, good information can be
revealed, when comparing the coloured radiosonde trend-circles with the surround-
ing trend-colours from GOME/SCIAMACHY in the near vicinity. The borders of the
circles indicate the Bayesian posterior probability P(A|D1,D2, I) for the agreement
of the trends at the specific geolocation. A black border indicates a probability of
agreement of ≤ 0.5, which means that hypothesis B is preferred. It has to be noted,
that 7 from 34 black bordered circles are covert by the other circles and cannot be
seen in the figure. A grey bordered circle represents probabilities above 0.5 and
≤ 0.76, where hypothesis A is favoured (104 circles) and a white border indicates,
that hypothesis A is substantially preferred with Bayesian probabilities above 0.76
(49 circles).

One reason for discrepancies are data gaps in the radiosonde data. This has been
observed e.g. at Minqin, China, shown in Fig. 5.6. The radiosonde data are often
missing in summer, especially in 2006 and 2007, where high water vapour has
been observed by SCIAMACHY. The t-test gives P(D1,D2|H0) = 0.01, whereas the
exact Bayesian gives P(A|D1,D2, I) = 0.43.

Another reasons for discrepancies between observed trends from satellite and
radiosonde water vapour data is the different resolution of the two instruments.
Radiosondes can capture local events, whereas the satellite measurement is an
average over a large area. This will be shown in the following with an example
taken from the west coast of Saudi Arabia. A blow-up of the region is depicted
in Fig. 5.7, where the same colour scale is used for the GOME/SCIAMACHY and
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Figure 5.5: Global water vapour total column trends from GOME/SCIAMACHY are
coded in colours from violet over blue and green to yellow and red. The 187
radiosonde water vapour trends are embedded into the figure as circles, where
the same colour bar is used for the filling. White bordered circles depict Bayesian
probabilities of agreements between satellite and radiosonde trends of > 0.76,
grey borders indicate probabilities above 0.5 and≤ 0.76, whereas black bordered
circles show probabilities of agreement ≤ 0.5.

radiosonde trends as in Fig. 5.5, but with different limits. Here an increasing water
vapour trend is observed with a radiosonde measurement exactly at the city of
Jeddah. Also the satellite trends in the near vicinity of the town are enhanced, but
not as strong as the very localised radiosonde trend. Thus, the satellite picture of
the increased trends over Jeddah are more smeared out over a larger region. This
explains the relative low probability of agreement between the observed trends,
which is indicated by the grey bordered circle.
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(a) GOME/SCIAMACHY deseasonalised data
(blue) and radiosonde data (red).

(b) Pooled GOME/SCIAMACHY and ra-
diosonde water vapour data.

Figure 5.6: Examples of GOME/SCIAMACHY and radiosonde water vapour time
series at Minqin, China.

Figure 5.7: GOME/SCIAMACHY water vapour trends at the Arabian peninsular
with embedded radiosonde trends. A different colour scale as in Fig. 5.5 is used
in this blow-up.
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6 Stochastic description of water vapour

and temperature

6.1 Interaction of water vapour and temperature

The strong coupling between temperature and water vapour is well studied in lab-
oratory experiments as performed e.g. by John Dalton in the 19th century. The
dependence of water vapour on temperature can also be elucidated by the rela-
tion between the saturation vapour pressure and the temperature, based on the
Clausius-Clapeyron equation. An empirical relation is given by Magnus:

E = 6.1hPa · 107.5T/(T+237.2
◦C) (6.1)

Figure 6.1 depicts graphically the Magnus equation Eq. 6.1.

Figure 6.1: Magnus curve (cf. Eq. 6.1).
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The strong correlation between water vapour and temperature has also been
shown for real measurements e.g. by Wagner et al. (2006), who calculated the
linear correlation coefficient for globally averaged monthly means of water vapour
columns (from the GOME instrument) and temperature (r = 0.58), where they
also used the GISS data set. In Sect. 4.3.3 the correlation coefficient between
globally averaged monthly mean water vapour columns and temperature data has
been estimated as r = 0.48, including SCIAMACHY data.

Beside these expected findings the water vapour (H2O) – temperature interac-
tion (in the following denoted HTI) in the real world is not always as simple as
in laboratory experiments. Regarding the complex interactions in the Earth at-
mosphere from radiation over cloud condensation, wind stress and also chemical
reactions it is not surprising, that also the HTI is influenced by these processes.
Moreover it is clear, that temperature and water vapour interact with the surface,
with e.g. vegetation, deserts, ocean and even with large cities or industrial areas.
Here it is clear, that also the intervention of mankind has a potential influence on
the HTI. Although these complex mechanisms are still not really understood, real
measurements can incorporate these information. In this context Lenderink and
Meijgaard (2008) showed, that hourly strong precipitation events occur more fre-
quent in the Netherlands, than expected from the temperature increase and the
Clausius-Clapeyron equation. These findings show, that the interplay of environ-
mental variables cannot only be described by known physical laws, but rather has
to be seen in the context of complex systems. Such results from Lenderink and Mei-
jgaard (2008) could also be interpreted as emergent phenomena (Ebeling et al.,
1998), which can be elucidated by the popular expression “the total is more than
the sum of its constituents”.

In 1912 A. A. Markov published his work on dependent random variables (Mar-
kov, 1912) called Markov chains. Markov chains have been used in Shannon’s
fundamental work on information theory (Shannon, 1948) and have undergone a
renaissance in the 1970’s with the increase in computational power. One of the first
approaches of modelling environmental parameters with Markov chains has been
performed by Waggoner and Stephens (1970), who described the succession of
trees in forests. The Markovian methods have been adopted, enhanced and trans-
ferred from Isagi and Nakagoshi (1990) on plant communities, from Usher (1979)
on insect populations and from Tanner et al. (1994) on coral reefs. Markov chains
are also used in climate research, particularly with precipitation, e.g. describing
two states “dry” and “wet” (Moon et al., 1994). A Markov chain analysis on land
use in Costa Rica has been performed by Stoorvogel and Fresco (1996). Climate
records from the Swiss meteorological office have been used by Nicolis et al. (1997)
for a Markov chain analysis comprising three states, convective weather, advective
weather and mixed weather. Nicolis and Ebeling use the Markovian analysis in
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the framework of complex systems (Ebeling et al., 1998) in the sense of symbolic
dynamics, where they also use the terminology from statistical physics and infor-
mation theory. Furthermore they show the wide range of applicability of Markov
chains, e.g. the analysis of texts, sheet music and bio-sequences.

6.2 The Markov chain

The Markov chain is a time discrete stochastic process (Waldmann and Stocker,
2003), which obeys the Markov property: Given the present state, future states
are independent from past states. If the values i0, ..., it−1 of random variables
X0, ..., Xt−1 are given, then it follows, that the probability, that Xt takes the value
of it , depends only on it−1. Mathematically, Markov chains are described using
conditional probabilities:

P(Xt = it |X0 = i0, ..., Xt−1 = it−1) = P(Xt = it |Xt−1 = it−1) , (6.2)

which are the transition probabilities of going from Xt−1 to Xt . Suppose a Markov
chain contains s states and X (t) ∈ [1, 2, ..., s] describes the state of a point at time t .
If the transition probabilities are independent of t (homogeneous Markov chain),
then the dynamics of the Markov chain model are given by the transition matrix P,
whose elements pi j are the conditional probabilities:

P(Xt = i|Xt−1 = j) i, j = 1, ..., s . (6.3)

If we denote π as the distribution of the states of a Markov chain with the relative
frequencies of the states as entries, then this distribution is recursively related to
the transition matrix (Waldmann and Stocker, 2003):

πt = Pπt−1 (6.4)

Equation 6.4 insinuates a stationary distribution, where π is constant over time:

π = Pπ , (6.5)

which is an eigenvalue problem with eigenvalue equal unity.

The description of environmental variables using Markov chains is valuable, but
under-represented in climate time series analysis. Therefore the Markov chain anal-
ysis is applied to GOME/SCIAMACHY water vapour and GISS surface temperature,
which allows the combined analysis of the two parameters. The methods are mainly
based on the works of Hill et al. (2004) and Freund et al. (2006) who apply the
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Markov chain analysis to a rocky subtidal community consisting of e.g. encrusting
sponges and bryozoans and a marine phytoplankton community based on several
diatom and flaggelate species, respectively.

The basic ideas of the application of the Markov chain analysis to environmental
parameters are divided into the following steps:

1. Preprocessing and construction of the Markov chain: The water vapour
and temperature data are reduced to discrete sequences of symbols, which
represent the states of the variables at times t , which are encoded as high
abundance, medium abundance and low abundance. Accordingly the water
vapour and temperature sequences are merged together and the combina-
tions of states (high, medium, low) form the Markov chain, which can be
characterised by Eq. 6.3.

2. Estimation of the transition probabilities: The transition probabilities (Eq.
6.3) are estimated from the Markov chain, and the transition matrix P is
derived.

3. Calculation of characteristic descriptors: Several characteristics are calcu-
lated from the transition matrix, which are e.g. persistence, replacement of

and entropy, which describe the climate system. These quantities will be ex-
plained later.

6.3 Data sources

With the Markov chain analysis approach the interplay of water vapour and tem-
perature will be investigated. For water vapour the global AMC-DOAS total column
water vapour product is used. Several global temperature products are available,
e.g. the HadCRUT3 (on a 5◦ × 5◦ grid) data from the University of East Anglia or
the GISS (Goddard Institute of Space Studies) surface temperatures. Here the GISS
data set is used, because of its higher spatial resolution (2◦ × 2◦). The GISS data
(Hansen and Lebedeff, 1992) are based on the Global Historical Climatology Net-
work (GHCN), which comprises 7280 stations, the United States Historical Clima-
tology Network (USHCN) with more than 1000 stations and the Scientific Commit-
tee on Antarctic Research (SCAR) with stations in Antarctica. Figure 6.2 depicts the
global stations from the GHCN. The data sets are adjusted to the overlapping time
span, which is from January 1996 to December 2005, and the GOME/SCIAMACHY
data are gridded to a 2◦ × 2◦ grid.

The Markov chain analysis presented here is a new approach of describing en-
vironmental parameters and does not raise the claim of a complete global analy-
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Figure 6.2: The Global Historical Climatology Network (GHCN) comprises about
7280 station. By courtesy of Robert A. Rhode.

sis. Therefore the methods have been applied exemplarily to a region, where deci-
sive environmental changes have been reported recently, i.e. the Iberian Peninsula,
which is shown in Fig. 6.3. The EEA (European Environmental Agency) reports
e.g. on extreme temperature changes in Europe, where the Iberian Peninsula is one
of the mostly affected regions (EEA/JRC/WHO, 2008). It is also susceptible to an
increase in the frequency of heat waves in summer and a decrease of frost colds
in winter. Nevertheless, the Markov chain analysis can of course be applied to ar-
bitrary regions. This will be done by analysing data from a region at the islands
of Hawaii in the central Pacific Ocean. The results from the two different climate
systems will be investigated under a significance analysis in Sect. 6.7.

6.4 Preprocessing and construction of the Markov

chains

The following analysis is performed with water vapour and temperature anomalies.
The, in principle, continuous water vapour and temperature data are reduced to a
sequence of discrete states. In the framework of symbolic dynamics, this approach
is known as partitioning (Freund, 1996). An important aspect of the reduction of
the data is the requirement of a small number of states to make the estimation of
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Figure 6.3: Iberian Peninsula subdivided into 20 2◦ × 2◦ grid pixels.

frequencies and transitions from a sample reliable. The distributions of the water
vapour and temperature data from the Iberian Peninsula are shown in Fig. 6.4.
The frequency distributions of the water vapour and temperature anomalies are

(a) Distribution of water vapour anomalies
from the Iberian Peninsula.

(b) Distribution of temperature anomalies
from the Iberian Peninsula.

Figure 6.4: The frequency distributions of water vapour and temperature anomalies
from the Iberian Peninsula can be described with Gaussian normal distributions,
which are depicted as black lines.

nearly following a Gaussian normal distribution, thus it seems reasonable to divide
the data into three states X (t) ∈ [1, 2, 3], which are separated by the standard
deviation of the data. This means, that every point X (t) < μ−σ is associated with
state one, every point μ−σ ≤ X (t)≤ μ+σ is assigned to state two, and every point
X (t)> μ+σ belongs to state three. The division of the data into three states, seems
to be adequate and well interpretable with respect to the normal distribution. Thus
state 2 corresponds to “normal” occurrences, while states 1 and 3 are rather rare
events. However, other divisions can be imaginable, e.g. the reduction to only two
states, divided by the mean or the splitting into three states by 1/3 quantiles. It has
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to be noted, that the normal distribution is at no means a necessary criterion for
the Markov chain analysis. A similar division to that using the standard deviation
with normally distributed data would be a separation by the respective lower 16%
quantile, middle 68% quantile and upper 16% quantile. For instance, Wessel et al.
(2000) partition human heart beat data into four discrete states, based on the mean
value and a parameter a, which corresponds to a special distance from the mean
value.

The construction of the three states, out of water vapour anomalies time series,
is graphically shown in Fig. 6.5(a). The time series represents the data from one
single grid cell in Fig. 6.3. The red lines divide the data into the three states. The
resulting Markov chain is shown in Fig. 6.5(b). As can be seen, all transitions,
between the three states are occurring.

(a) Division of the time series into three
“states”, low values, medium values and high
values.

(b) Water vapour Markov chain, consisting of
three discrete states.

Figure 6.5: Reduction of a water vapour time series into a sequence of three discrete
symbols (1,2,3), which can be described as a Markov chain consisting of three
states.

In the same way the Markov chains for the temperature data are produced. In the
following the water vapour and temperature chains are combined to a single Mar-
kov chain containing nine states X (t) ∈ [1(11), 2(12), 3(13), 4(21), 5(22), 6(23),
7(31), 8(32), 9(33)], where the basis of the states (water vapour and temperature)
is given in brackets. The resulting Markov chain is shown in Fig. 6.6.

6.5 Estimation of transition probabilities

As shown in the previous section, the bivariate water vapour – temperature data
set has been reduced to a univariate sequence of nine discrete climate states. In
this approach the assumption of homogeneity (time independence) is used and the
transition probabilities are estimated over the complete time span from January
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Figure 6.6: Combined Markov chain of the water vapour (H2O) - temperature -
interaction (HTI) with nine discrete states.

1996 to December 2005, which comprises 120 months. Furthermore spatial homo-
geneity is assumed over the expansion of the Iberian Peninsula, which means, that
the coupling of water vapour and temperature is assumed to be the same for the
entire region. The Iberian Peninsula is covered by 20 2◦ × 2◦ grid pixels (shown
in Fig. 6.3), thus the analysis is based on 20 Markov chains each with 120 states
for the time span from 1996 to 2005. Regarding the temporal coverage of the data
(120 months), the transition probabilities have to be estimated from 120·20 = 2400
states or 2380 transitions between states (no transition to t0).

If the absolute frequencies of the states X (t) ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9] are denoted
with f j, the relative frequencies are obtained by:

�pj =
f j∑

f j

. (6.6)

If ni j gives the number of states j at time t , which change to state i at time t + 1,
the transition probabilities are estimated with:

�pi j =
ni j∑

ni j

. (6.7)

The estimated transition probabilities�pi j form the transition matrix �P. If the matrix�P is nonnegative, then it is primitive if and only if �Pm
> 0 for some m ≥ 1 (see
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e.g. Horn and Johnson (1990)). Then a Markov chain described by Eq. 6.4 will
asymptotically approach an equilibrium or stationary distribution, which is given
by Eq. 6.5. The transition matrix �P for the Iberian Peninsula (time and space homo-
geneity assumed) is given in Tab. 6.1.

1 2 3 4 5 6 7 8 9
1 0.132 0.019 0.000 0.067 0.054 0.058 0.000 0.044 0.015
2 0.062 0.114 0.000 0.126 0.092 0.036 0.091 0.093 0.037
3 0.000 0.043 0.036 0.000 0.005 0.022 0.000 0.000 0.059
4 0.155 0.024 0.000 0.193 0.083 0.000 0.273 0.098 0.074
5 0.496 0.614 0.464 0.439 0.579 0.468 0.636 0.574 0.397
6 0.062 0.062 0.179 0.099 0.047 0.151 0.000 0.020 0.132
7 0.016 0.000 0.000 0.009 0.005 0.000 0.000 0.000 0.007
8 0.047 0.062 0.071 0.036 0.080 0.129 0.000 0.142 0.176
9 0.031 0.062 0.250 0.031 0.055 0.137 0.000 0.029 0.103

Table 6.1: Transition matrix �P, estimated from 2380 transitions in 120 months for
the Iberian Peninsula. The entries �pi j represent the transition probabilities of
changing the state from column j to row i.

The transition matrix �P is a stochastic matrix, which means that the sum over
each column is equal unity. The entries of �P are the transition probabilities �pi j of

changing the state from column j to row i. Thus it is clear, that
∑9

i=1�pi j = 1 for any
j, because the probability, that the system is in one of the nine states at time t+1 is
also unity. A striking feature of the transition matrix is obtained from the�p5 j (blue
in Tab. 6.1), which are the highest entries for each column. This means, irrespective
in which state the system is at time t , the probability of switching to state five is
higher than changing to any other state at time t +1. State five corresponds to the
“normal” state with medium water vapour and medium temperature. The diagonal
elements �pj j (red in Tab. 6.1) denote the probability of holding state j after the time
step from t to t+1. These entries are the second highest after the�p5 j for states two,
four, five, six and eight. Thus, if the system is not going into the “normal” state five
a relative high probability is observed in conserving the current state. This finding
reflects the property of persistent weather conditions. Furthermore, an interesting
state is the number seven, which is a strange state consisting of high water vapour
and low temperature. This state most probably changes from t to t+1 to state five
or four. Thus, state seven can be interpreted as an extreme state, which is rapidly
retracted to more usual states. It has to be noted, that the entire ni j in Eq. 6.7 are
greater zero, thus the �pi j = 0.000 in Tab. 6.1 result from rounding.



80 6 STOCHASTIC DESCRIPTION OF WATER VAPOUR AND TEMPERATURE

Finally, the observed relative frequencies �pj of the states (cf. Eq. 6.6) can be
compared with the calculated equilibrium distributions of the states �π j, which are
derived via �π = �P�π. Figure 6.7(a) shows the relative frequencies (observed (blue)
and calculated (red)) of the states as a histogram, while Fig. 6.7(b) depicts a scatter
plot of �π j (calculated) against �pj (observed).

(a) Histogram of the observed (�pj) and calcu-
lated (�π j) relative frequencies of the states.

(b) Scatter plot of logarithmised (decadal) ob-
served (�pj) and calculated (�π j) relative fre-
quencies of the states.

Figure 6.7: A histogram (left) and a scatter plot (right) of the relative frequen-
cies of the nine states indicate, that there is no difference observed between the
observed (blue) and calculated (red) distributions.

The most frequent state is the number 5, the “normal” state. The fewest observed
state is the “strange” state seven, but also state three, which can be interpreted as
“strange” too, is quite rare.

As can be seen, the differences between the observed and estimated frequencies
are marginal, thus the time and space homogeneous system of water vapour and
temperature of the Iberian Peninsula has already reached the stationary distribu-
tion. In the sense of the Markov chain analysis this result is observed under the
decisive assumption of temporal homogeneity, which implies a constant transition
matrix over time.

6.6 Descriptors of the HTI

According to Hill et al. (2004) we can calculate several characteristic quantities,
describing the HTI. The basis of these descriptors is given by the transition matrix
of the Iberian Peninsula, for which the mean descriptors are calculated. This means,
that we are not looking at a certain state and its behaviour but rather calculate
averages over the states.
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Persistence. Persistence gives the probability that the region of the Iberian Penin-
sula is in state j at time t and still in state j at time t + 1. Thus it is a measure of
the stability of a climate system.

P(persistence) =
s=9∑
j=1

�π j�pj j = 0.38 . (6.8)

Replacement of. Replacement of is the probability that a state j is changed to i

from t to t + 1, i.e. the complementary event of persistence, i.e.

P(replacement of) =
s=9∑
j=1

�π j(1− �pj j) = 0.62 (6.9)

Replacement by. The rows of �P denote the probabilities, that the state i replaces
other states. The average over these probabilities is 1

s−1

∑
j �=i
�pi j, which represents

the mean probability of a state to replace other states. This can be generalised for
the whole system by summing over all states:

P(replacement by) =
s=9∑
i=1

�πi

1

s− 1

∑
j �=i

�pi j = 0.31 (6.10)

Turnover time. The turnover rate is the rate at which the region changes its
state from t to t + 1:

� j = (1− �pj j) . (6.11)

The inverse gives the turnover time:

E(turnover time) = τ j =
1

� j

. (6.12)

The mean turnover time over the region is given by:

τ=

s=9∑
j=1

�π j

� j

= 1.8months . (6.13)

Recurrence time. The Smoluchowski recurrence time describes the time elaps-
ing between leaving a state j and then returning to it again. The recurrence time
for state j is the ratio of the number of states i �= j to the number of unbroken
blocks of states i �= j. Kac (1947) elucidates this with an example. Suppose of hav-
ing just two states X (t) ∈ [0, 1] and e.g. the following sequence of 14 observations:

10101010101010 , (6.14)
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then the recurrence time for state 1 is the number of 0’s divided by the number
of unbroken blocks of 0’s, which is 7/7=1. Suppose another sequence has been
observed, which is

100100100100100 , (6.15)

where we find 10 zeros and five unbroken blocks of zeros, hence giving a recurrence
time for state 1 as 10/5=2.

For a single HTI state the recurrence time is

φ j =
1− �π j�π j(1− �pj j)

. (6.16)

For the whole system we find

φ =

s=9∑
j=1

�π jφ j (6.17)

=

s=9∑
j=1

1− �π j

1− �pj j

= 9.6months , (6.18)

according to Hill et al. (2004).
Entropy: In the context of Shannon’s information theory (Shannon, 1948), the

entropy is an inverse measure of predictability. The average entropy over a region
is:

H(P) = −
s=9∑
i=1

�πi

s=9∑
j=1

�pi j log�pi j . (6.19)

H(P) gives the mean entropy of a region. If H(P) = 0, then the state in the next
time step is completely determined. The maximum entropy occurs under equal
distribution, when H(P) = Hmax(P) = − log(1/s), i.e. the state in the next time step
is completely unpredictable. Thus we can calculate a normalised entropy for the
Iberian Peninsula, which is:

Hr(P) =
H(P)

Hmax(P)
= 0.67 (6.20)

The above derived descriptors can be interpreted as characteristics of a climate
system. The strengths of these descriptors (which are new in atmospheric science)
emerge, if different climate systems are compared among each other. Thus a dif-
ferent climate system of the same size as the Iberian Peninsula is analysed, which
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Figure 6.8: A region centred over Hawaii subdivided into 20 2◦ × 2◦ grid pixels.

Iberian Peninsula Hawaii

persistence 0.38 0.44
replacement of 0.62 0.56
replacement by 0.31 0.18
turnover time 1.8months 1.9months

recurrence time 9.6months 11.7months
entropy 0.67 0.63

Table 6.2: Markovian descriptors of two climate systems.

has been chosen as a region centred over the islands of Hawaii, shown in Fig. 6.8.
Analogue to the derivation of the descriptors for the Iberian Peninsula, the charac-
teristic descriptors are calculated for the Hawaiian region. The results are juxta-
posed in Tab. 6.2.

To interpret these results a significance analysis is necessary, which is shown in
the next section.

6.7 Significance of the descriptors

The basic claim on the descriptors to build the framework of a classification is
that the descriptors of different climate systems are significantly unequal. Thus,



84 6 STOCHASTIC DESCRIPTION OF WATER VAPOUR AND TEMPERATURE

we will perform a significance analysis based on simulated Markov chains on the
differences of the descriptors from the Iberian Peninsula and Hawaii. The statistical
hypotheses are:

H0 : There is no difference between the Iberian Peninsula and Hawaii. The ob-
served differences between the descriptors are zero and the departure is
merely due to scatter.

H1 : The observed differences between the descriptors from the Iberian Peninsula
and Hawaii depart from those expected by an amount, which cannot be ex-
plained by chance.

The procedure of the significance test is outlined in the following steps:

1. A pooled data set is created, consisting of the Iberian Peninsula and Hawaii
data.

2. As for the separated sets of data, the pooled set is partitioned, combined to
Markov chains and the transition matrix of the pooled data set is estimated.

3. Using this pooled transition matrix, 20 Markov chains of length 120 (same
size as Iberian Peninsula and Hawaii data sets) are simulated twice and the
descriptors are estimated for both.

4. Accordingly the differences of the simulated descriptors are calculated.

5. Steps 3 and 4 are repeated many times (here 2000 times) to achieve smooth
distributions of the differences of the descriptors.

6. Finally the probability of the really observed differences can be calculated.

Exemplarily we show the normalized distribution function of the absolut differ-
ences ds = |px − py | between the persistence px and py estimated from two simu-
lated data sets x and y of the same size as the Iberian Peninsula and Hawaii region
in Fig. 6.9. Accordingly we can perform a Gauss-test and calculate the probability
of observing the real difference of the persistence between the Iberian Peninsula de-
noted as pI and Hawaii denoted as pH . The null-hypothesis is H0 : d = |pI−pH |= 0
and the alternative is H1 : d = |pI−pH | �= 0 with d = |pI−pH |= |0.3772−0.4408| =
0.0636. The histogram in Fig. 6.9 can be described with a one sided Gaussian nor-
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Figure 6.9: Normalized histogram of the distribution function of the differences of
persistence from two simulated data sets, based on 2000 data points. The black
line depicts a normal Gaussian distribution, which is fitted to the histogram.

mal distribution Nμd ,σd
with μd = −1.9 · 10−4 and σd = 1.6 · 10−2. The probability

of observing a difference d ≥ 0.0636 becomes:

P(0.0636≤ d ≤∞) =

∫ ∞

0.0636

2 · Nμd ,σd
(d)dd (6.21)

=

∫ ∞

0.0636

2�
2πσ2

d

· e−
1
2

�
d−μd
σd

�2

dd . (6.22)

Using the complementary error function we find:

P(0.0636≤ d ≤∞) = erfc

⎛⎝d −μd�
2σ2

d

⎞⎠ (6.23)

= erfc

$
0.0636+ 1.9 · 10−4

�
2 · 0.0162

%
(6.24)

= 9.7 · 10−5 . (6.25)

It turns out, that the difference of the persistence between the Iberian Peninsula
and Hawaii is highly significant. Making an error in rejecting the null-hypothesis
of equal persistences of the two regions accounts only to a probability of 9.7 · 10−5.
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The significance analysis is also performed for the other descriptors. Table 6.3
summarizes the results for the intercomparison of the descriptors from the Iberian
Peninsula and Hawaii. As can be seen from Tab. 6.3 all differences between the

Iberian Peninsula Hawaii |d| P-value
persistence 0.3772 0.4408 0.0636 9.7 · 10−5

replacement of 0.6228 0.5592 0.0636 9.7 · 10−5

replacement by 0.3086 0.1850 0.1236 7.7 · 10−12

turnover time 1.8205months 1.8878months 0.0673 0.33
recurrence time 9.5713months 11.6598months 2.0885 2.9 · 10−20

entropy 0.6740 0.6286 0.0454 0.001

Table 6.3: Markovian descriptors of two climate systems with the probability that
the difference between the descriptors is equal zero.

descriptors are significantly unequal zero, except the turnover time. Thus, the
Markov chain analysis is able to differentiate in most cases significantly between
different climate systems on the basis of measured water vapor and temperature
data.

Regarding, that anomalies have been investigated, the results have to be seen
relative to the seasonal cycle. Thus, if e.g. state nine, which is high water vapour
and high temperature, is conserved from month t to month t+1, then this has to be
seen as a persistence of higher water vapour and temperature values than normal.
The probability of persistence, which is a measure of climate stability is higher for
Hawaii (0.44) than for the Iberian Peninsula (0.38), which is clear concerning the
different climate zones of the two regions (tropics, mid-latitudes). The same holds
vice versa for the probability of replacement of. The probability of replacement
by is smaller for Hawaii, which supports the more stable climatic character of the
tropical island. The turnover times are a measure of the successional rates of the
climate system, and the difference between the climate systems seems marginal,
but is still significant in the statistical sense. The recurrence time is larger for
Hawaii than for the Iberian Peninsula. On an average, the Hawaiian region, once
leaves a certain state, returns to it after about 12 months, whereas the Iberian
Peninsula region turns back to a state, which was left, after about 10 months. The
entropy, which is an inverse measure of the predictability of a state at time t + 1 if
the state at time t is known is 0.67 for the Iberian Peninsula climate system. The
entropy of the Hawaiian region is significantly smaller with 0.63. However the
predictability of states from one month to the next, for both climate systems, is
very uncertain.
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Concluding, significant different magnitudes of the descriptors for the two cli-
mate systems, the Iberian Peninsula and Hawaii, have been found. As an outlook,
the incorporation of more climate parameters such as clouds, precipitation and
vegetation into the Markov chain could give a more complete picture of the cli-
mate states of a region. On the basis of the Markovian descriptors it could also be
possible to develop a new climate classification scheme.
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7 Conclusions and outlook

In this study, three main points concerning atmospheric water vapour, retrieved
from satellite data, have been addressed. First, a comprehensive trend analysis has
been performed with global GOME/SCIAMACHY water vapour data, comprising
the time span from 1996 to 2007 on a monthly mean basis. One requirement for
the trend analysis has been the connection of the GOME and SCIAMACHY data
sets, which has been achieved by introducing a level shift to merge the two sets
of data together during the least square regression procedure. Furthermore the
influence of El Niño and near surface temperature on the water vapour has been
investigated.

The second part addressed the validation of the GOME/SCIAMACHY trends with
independent water vapour trends retrieved from globally distributed radiosonde
stations. It has been shown, that the intercomparison of trends using frequentist
methods and Bayesian model selection can complement each other. However more
information could be revealed from the Bayesian approach, which mostly supports
the hypothesis of an underlying same water vapour trend from both instruments.

Finally, a new concept to describe the water vapour - temperature - interaction
has been applied in the form of a stochastic Markov chain analysis. New descriptors
have been derived, which are significantly characteristic for the climate systems
under consideration. These descriptors can give information of e.g. the stability of
a climate system, the successional times of changes or the short term predictability.

In the following, conclusions are drawn in more detail about the three major
parts of this study.

The trend analysis (of global monthly mean water vapour data from 1996 to
2007) focussed on the estimation of the statistical significance of the observed
trends. First the trends have been calculated from monthly mean water vapour
column amounts where the seasonal component has been removed. Special em-
phasis has been placed on the consideration of autocorrelations in the data. The
trend calculation, which is based on the well known least square linear regression,
provides an error for the trend. This error is influenced by the length of the time se-
ries, the noise, the autocorrelation of the noise, and the level shift between GOME
and SCIAMACHY data.

The significance of the trends has been estimated using the frequentist approach
in form of a Gauss-test, which has revealed significant trends on a 95% level.
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For the period from January 1996 to December 2007 significant increase in the
water vapour columns up to 5% per year has been found in Greenland, East Europe,
Siberia and Oceania, and significant decrease up to 5% per year has been observed
in the northwest USA, Central America, Amazonia, Central Africa, and the Arabian
Peninsula. The significant trends can be interpreted as tracers of the climate state,
hence these regions could change their states, e.g. from dry to humid or from moist
to dry. However long-term oscillations cannot be excluded.

For the whole globe an increasing trend of 0.0042g/cm2±0.0024g/cm2 per year,
i.e. 0.29% per year has been observed. This trend is non-significant in the strict
sense when taking into account the 1997/1998 El Niño event, which is seen in the
globally averaged data as strong enhanced water vapour columns from Septem-
ber 1997 to March 1999. Masking out the El Niño time span – which should
be done in this case – a significant water vapour trend of similar size, namely
0.0040g/cm2±0.00009g/cm2 per year or 0.28% per year has been observed. The
complete global time series is strongly autocorrelated, with a magnitude of 0.6 at
lag one. These high autocorrelations can be mainly attributed to the El Niño event
in 1997/1998, because the autocorrelations in the data without El Niño times are
reduced to 0.2. Strong autocorrelations in time series can be misinterpreted as
trends by the use of simple least square regression, thus they have been considered
during the regression procedure. Taking autocorrelations into account, the same
trends have been observed for both time series, but different errors of the trends
have been estimated, because the consideration of autocorrelations increases the
errors. Hence, the consideration of autocorrelations is necessary to reveal convinc-
ing trends and errors by using least square trend estimation, especially for short
time series and strong autocorrelations.

As also shown by Wagner et al. (2006), the globally averaged water vapour
columns correlate with the near surface temperature. Beside the simple correla-
tion the concept of Granger causality, which can give insights into a causal relation
between the two quantities water vapour and temperature has been applied. It
has turned out, that both, water vapour G-causes temperature and temperature
G-causes water vapour, which is a characteristic of a feedback system. And in-
deed, water vapour and temperature constitute a feedback system (Held and So-
den, 2000). Thus, the detection of a feedback in the relatively short water vapour
and temperature time series supports the high quality of the data.

The water vapour trends derived from satellite data have been compared with
water vapour trends from globally distributed radiosonde measurements. The in-
tercomparison of the trends from independent instruments has been performed
in a statistical sense using hypothesis testing. The standard frequentist approach,
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i.e. the well known Student’s t-test has not given definite answers. Most of the
pairs of trends (85%) are evaluated as non-significant, thus neither agreement nor
disagreement could be stated.

The Bayesian approach has inferred the posterior probabilities for the two hy-
potheses:

• A: Both data sets have the same trend,

• B: The two time series have different trends,

which is not possible using frequentist statistics hypothesis testing.
The great attractiveness of the Bayesian method is, that it is a real model selec-

tion procedure. Thus it is possible to decide between one of the two hypotheses
A and B. In the case of water vapour trends from satellite and radiosonde data,
hypothesis A is favoured in 82% of the trend pairs. The evidence for hypothesis A

is even substantial in 26% of pairs of trends.
However, the interpretation of agreement and disagreement has also to be seen

in the context of the origin of the data as discussed in Sect. 5.2, where several pos-
sibilities for disagreement can be imagined. The two most important aspects for
disagreeing trends from satellite and radiosonde measurements are constituted by
missing data in the radiosonde time series and the different resolution of the two
instruments. The problem of data gaps in the radiosonde data has been shown for
a time series at Minqin, China. Here, water vapour measurements are mostly miss-
ing in summer, which introduces a strong bias in the trend measured by radiosonde.
Thus, the advantage of in principle continuous monthly mean data from satellite is
pointed out. The problem of different spatial resolutions was shown e.g. for a time
series at the city of Jeddah, where the radiosonde, which is located directly in the
city, can capture local events, whereas the satellite has not such a high resolution.
However, the city of Jeddah is also seen as a spot of increasing water vapour in the
satellite data, but not as strong as seen by the radiosonde.

The total water vapour column is strongly connected with near surface temper-
ature. Therefore an analysis of the combined water vapour and temperature data
has been applied in the form of a stochastic Markov chain analysis.

The Markov chain approach reduces the bivariate time series to a univariate se-
quence of symbols, representing the water vapour and temperature interaction in
the form of nine discrete states, which can be described as Markov chains. As an
example the Iberian Peninsula is investigated, because this region is strongly sus-
ceptible to climate change, which has been reported by e.g. EEA/JRC/WHO (2008).
Assuming time and space homogeneity of the Markov chains from the Iberian Penin-
sula several mean characteristic descriptors have been estimated, which are new
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in atmospheric research. These characteristics, which are statistically significant,
describe e.g. the stability of a climate system, the successional changes of water
vapour – temperature interaction on time scales of months or e.g. the entropy of a
system, which is an inverse measure of short term predictability. The strength of
the derivation of these descriptors is the possibility of comparing different climate
systems. This has been done exemplarily for the Iberian Peninsula and the Hawaii
islands, which are of course different climate systems, because the first is located at
mid-latitudes and the last is located in the tropics. The Markov chain analysis has
revealed significant differences between the two regions in the form of the charac-
teristic descriptors. It has turned out, that the water vapour – temperature interac-
tion at the Hawaiian region is more stable than at the Iberian Peninsula. This has
been revealed by calculating the persistence, which is the probability of conserv-
ing a certain water vapour – temperature state from one month to the next. This
probability is 0.38 for the Iberian Peninsula and 0.44 for the Hawaii islands, and
this difference is statistically highly significant. Another descriptor, which is charac-
teristic for the successional changes in the system is, e.g. the replacement by. This
quantity gives the probability, that a state replaces another and has been estimated
to 0.31 for the Iberian Peninsula and 0.18 for Hawaii. Furthermore, the recurrence
time, which represents the time elapsing between leaving a state and returning to
it again and thus also constitutes a measure of succession of states in the climate
system gives 9.6 months for the Iberian Peninsula and 11.7 months for the Hawaii
islands. These findings are in line with the known general meteorological proper-
ties of the tropical Hawaii region (more stable) and the mid-latitudinal region of
the Iberian Peninsula (more unstable). As an outlook, the Markov chain analysis
offers a new possibility for a climate classification. The incorporation of other im-
portant climate variables, such as clouds, precipitation and vegetation would give
a more complete picture of the climate state of a region. Using the Markovian
descriptors the development of a new climate classification scheme would be a
valuable continuation of this work.

The water vapour column is changing, which is derived from satellite data and
validated with radiosonde measurements. The human impact on this is not clear,
though the anthropogenic intervention in nature is beyond all question. On the one
hand humans irrigate fields (which has a direct effect on the atmospheric water va-
pour columns reported by Boucher et al. (2004)) for agriculture, on the other hand
they drain swamps. Woods are deforested and grassland is concreted. Diamond
(2005) refers to drastic anthropogenic interventions such as deforestation and high
consumption of groundwater in the northwest USA (especially in Montana), where
significant water vapour decrease is detected. For instance Gordon et al. (2005)
attribute a decrease in water vapour flow of the Brazilian Amazon region to 15%
deforested rainforest, which is in line with the observed decreasing trends.



93

Thus, a continuation of water vapour measurements is absolute necessary to
monitor the ongoing climate change, which has been successfully initiated with
the start of the first GOME-2 instrument on MetOp (Noël et al., 2008). One can
imagine that at a certain length of the time series a simple linear regression is not
suitable and eventually more complex models are needed. For instance Dose and
Menzel (2006) perform a Bayesian model selection with a constant model, a simple
linear trend model and a model that allows two trends on tree blossom time series,
which could be a useful method for the analysis of the extended data set comprising
GOME, SCIAMACHY and GOME-2 measurements.

Moreover, an extension of the Markov chain analysis with other important cli-
mate parameters, e.g. clouds, precipitation and vegetation constitutes a valuable
method to detect climate change in a more complex context of the interaction of
climate variables.
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A Derivation of the error of a trend

Following Fahrmeir et al. (2004) we want to minimise the function

n∑
i=1

(Yi −α− β xi)
2 →min , (A.1)

where Yi contains the data, α and β are the regression coefficients and xi represents
the time. The least square estimator of the trend is given by

�β = ∑n

i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
. (A.2)

The hat over β means, that this quantity is estimated and thus error-prone. The
bar over e.g. x denotes the arithmetic mean.

After expanding the numerator we obtain

�β = ∑n

i=1(xi − x)Yi∑n

i=1(xi − x)2
−
∑n

i=1(xi − x)Y∑n

i=1(xi − x)2
, (A.3)

and with
∑n

i=1(xi − x)Y = 0 we find that

�β = ∑n

i=1(xi − x)Yi∑n

i=1(xi − x)2
=

n∑
i=1

$
(xi − x)∑n

i=1(xi − x)2

%
Yi =

n∑
i=1

biYi , (A.4)

with

bi =
(xi − x)∑n

i=1(xi − x)2
. (A.5)

From Eq. A.4 we see, that �β is a linear function of Yi.

The least square estimators are denoted as �Yi = �α + �β xi and the residuals are�εi = Yi − �Yi. The mean sum of squared residuals, which is the variance, is then
obtained by �σ2 = 1

n−2

∑n

i=1 �ε2, (n− 2, because of the two fit parameters α and β).
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To estimate the error of the trend, we assume normally distributed residuals:
εi ≈ N(0,σ2) and also normally distributed data Yi ≈ N(α+β xi,σ

2) , and because�β is a linear function of Yi, �β is also normally distributed:�β ≈ N(β ,σ2�β) . (A.6)

σ2�β represents the variance of �β , which can be derived using Eq. A.4:

Var(�β ) = Var

&
n∑

i=1

biYi

'
=

n∑
i=1

b2
i
· Var(Yi) (A.7)

with

b2
i

=
(xi − x)2∑n

i=1(xi − x)2 ·
∑n

i=1(xi − x)2
(A.8)

(A.9)

we find

Var(�β ) = ∑n

i=1(xi − x)2 · Var(Yi)∑n

i=1(xi − x)2 ·
∑n

i=1(xi − x)2
. (A.10)

The Var(Yi) can be pulled out of the sum in Eq. A.10, because it is the same for all
i. Equation A.10 can be simplified, and we find:

Var(�β ) = Var(Yi)∑n

i=1(xi − x)2
. (A.11)

With

Var(Yi) = E(Yi − (α+ β xi))
2 , (A.12)

where E denotes the expectation value and the least square estimates �Yi = �α+ �β xi

it follows, that

(Var(Yi) = E(Yi−(�α+ �β xi))
2 = E(Yi− �Yi)

2 = E(�εi)
2 =

1

n− 2

n∑
i=1

�ε2
i
= �σ2 . (A.13)

Using Eqs. A.13 and A.11 we find the estimator for the variance of �β:

σ2�β = �σ2∑n

i=1(xi − x)2
. (A.14)

The error of �α can be derived in an analogues way. In the App. C the error estima-
tion of the trend is shown for the multivariate case in matrix notation, where also
autocorrelations and a level shift are considered.
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B Student’s t-test

The other important aspect of statistics used in this thesis is the hypothesis testing,
especially the Student’s t-test.

The t-Test is based on the Student distribution, which was developed 1908 by
W. S. Gosset under his pseudonym “Student”. Gosset discovered, that the stan-
dardised mean of normally distributed data follow his Student’s distribution if the
variance is not known and has to be estimated from the data. The corresponding
probability density distribution is given as

Φn(x) =
Γ



n+1
2

�
�

nπΓ



n

2

� $1+
x2

2

%−n+1
2

, (B.1)

where n depicts the degrees of freedom of the data input x and Γ is the Gamma-
function, which is typically tabled in standard statistical and mathematical software
packages.

The standard t-test is typically used for the comparison of two sets of data D1t

and D2t , which can be described by their mean values μ1, μ2 and their noise in form
of the standard deviations σ1 and σ2, which are iid (independent and identically
distributed) Gaussian noise. Accordingly one is interested in the two hypotheses
whether the means are the same or they are different (within their uncertainties).

The procedure is straight forward: First the difference of the two means is calcu-
lated, which is

d = μ1−μ2 , (B.2)

then the nullhypothesis can be set up, that the data are the same, if the difference is
equal zero: d = 0. The nullhypothesis is mathematically formulated as H0 : d = 0
and the alternative is H1 : d �= 0. The philosophy behind the frequentistic hypothe-
sis testing is, that a certain cause is assumed (nullhypothesis) and accordingly the
data are tested, if they are agreeable with the cause.

Following, the standard deviation of the difference d has to be estimated, which
is:

σd =

)
σ2

1

N1
+
σ2

2

N2
, (B.3)
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where the Ni are the respective length of the data (i.e. the number of data). Subse-
quently the t-statistic can be set up, i.e.:

t =
d

σd

. (B.4)

Now one has to perform the significance test to either confirm or reject the nullhy-
pothesis on a definite confidence level. The above t-statistic follows a t-distribution
with f degrees of freedom, which are calculated as follows:

f =
σ2

1/N1 +σ
2
2/N2

(σ2
1/N1)

2/(N1 − 1) + (σ2
2/N2)

2/(N2 − 1)
, (B.5)

which is called the Welch-Satterthwaite equation. Now, one has to look at the t-
distribution with f degree of freedom and reveal the likelihood of observing the
value t from Eq. B.4. For f → ∞ the t-distribution converges to the standard
normal distribution. Usually, for f > 30 a normal distribution is a very good ap-
proximation (Fahrmeir et al., 2004).
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C Trend estimation in matrix notation

The following steps show the calculation of the trend ω and the uncertainty of
the trend σω regarding autocorrelations. Equation (4.1) can be cast into compact
matrix notation

Y= Xβ+N , (C.1)

where Y is the � × 1 vector of observation, X is a � × 3 matrix consisting of the
constant Ct , time Xt and step function Ut . β = (μ,ω,δ)′ represents the vector of
unknown regression coefficients and N is the noise vector afflicted with autocorre-
lations.

The Nt are directly calculated from the time series (cf. Eq. (4.3)) and with the
connection to the εt from Eq. (4.2) only the εt for t = 1, ..., T can be calculated via

εt = Nt −φNt−1 (C.2)

because no N−1 exists. Therefore the ε0 has to be estimated by ε0 =
�

1−φ2N0

which is motivated by the assumption

σε

σN

≈ εt

Nt

. (C.3)

A matrix P′ is constructed which satisfies:

P′N = ε (C.4)

which is in detail:⎛⎜⎜⎜⎜⎝
�

1−φ2 0 0 . . .
−φ 1 0 . . .
0 −φ 1 . . .
...

...
...

...

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝

N0

N1

N2
...

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
ε0

ε1

ε2
...

⎞⎟⎟⎟⎟⎠ (C.5)

so that N = P′−1ε.
The model Eq. (C.1) becomes:

Y= Xβ+ P′−1ε . (C.6)
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Using matrix algebra, the model can be written as

P′Y = P′Xβ+ ε (C.7)

or using the transformed variables Y∗ = P′Y and X∗ = P′X we have

Y∗ = X∗β+ ε . (C.8)

Now we have absorbed the autocorrelations in the transformed variables Y∗ and X∗

of model Eq. (C.8) and we can apply a least square fit. The least square estimator
can be calculated by:

�β = (X∗′X∗)−1X∗′Y∗ . (C.9)

Denoting the diagonal elements of (X∗′X∗)−1 with vj the variance of �β becomes:

Var( �β j) = σ
2
ε
vj , j = 1, 2, 3 , (C.10)

where σ2
ε

stands for the variance of the εt . Therefore the variance of the trend
estimator �ω is

σ2�ω = Var( �ω) = σ2
ε
v2 . (C.11)

The variance σ2�ω or the standard deviation σ �ω, respectively, of the trend estimator
considers the length of the data (�), the contained noise (σε), the autocorrelation
of the noise (φ) and additionally the position of the level shift (ϑ), but not its
magnitude. Thus σ �ω can be written as

σ �ω =
�

12σε

(1−φ) · [�(�2− 1)]
1
2

· 1

[1− 3ϑ(1− ϑ)] 1
2

, (C.12)

where ϑ = T0/T is the fraction of the data before the level shift occurs. T denotes
the maximal number of data and T0 represents the position of the level shift. With
the assumption �(�2− 1) ≈ �3 Eq. (C.12) can be written as:

σ �ω ≈
�

12σε

(1−φ) · � 3
2

· 1

[1− 3ϑ(1− ϑ)] 1
2

. (C.13)

The variance σN of the autocorrelated noise Nt is directly related to the variance
σε of the white noise εt by

σ2
N
=

σ2
ε

(1−φ2)
, (C.14)
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thus an approximation is found with

σ �ω ≈
�

12σN

�
3
2

·
�

1+φ

1−φ ·
1

[1− 3ϑ(1− ϑ)] 1
2

. (C.15)

However, if the magnitude of autocorrelationφ in Eq. C.14 has to be estimated, it is
error prone and thus also Eq. C.14 is actually an approximation σ2

N
≈ σ2

ε
/(1− �φ2).

More details on the estimation of the trend uncertainty can be found in Tiao et al.
(1990) and Weatherhead et al. (1998).
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D Bayes’ theorem

From the basic algebra of probability theory, the sum rule

P(Y |I) + P(Y |I) = 1 (D.1)

and product rule

P(Y, X |I) = P(Y |X , I) · P(X |I) , (D.2)

Bayes’ theorem can be derived as:

P(Y |X , I) =
P(X |Y, I) · P(Y, I)

P(X |I) , (D.3)

where X and Y are propositions such as “it is cloudy” or “it is raining”. P(Y |X , I) is
the probability of Y conditional on X and I , where I denotes relevant background
information. For example, we can ask for the conditional probability that it is
raining given a cloudy sky: P(raining|cloud y, I). I could in this case be e.g. that
we saw the weather forecast in the morning.

P(Y |X , I) is called the posterior probability, P(X |Y, I) is the likelihood, P(Y, I) is
the prior probability and P(X |I) has former been called the marginalization likeli-
hood, but nowadays Sivia and Skilling (2006) introduced the term ’evidence’ for
the denominator.

An important aspect from probability theory is the marginalization rule

P(X |I) =
+∞∫
−∞

P(X , Y |I)dY =

+∞∫
−∞

P(X |Y, I) · P(Y |I)dY , (D.4)

which can be well elucidated by an example taken from Sivia and Skilling (2006):
Suppose there are M candidates in a presidential election; then Y1 could be the
proposition that the first candidate will win, Y2 that the second will win, and so
on. Let X be the proposition e.g. that unemployment will be lower the next year,
irrespective of whoever becomes president, then:

P(X |I) =
M∑

k=1

P(X , Yk|I) =
M∑

k=1

P(X |Yk, I) · P(Yk|I) . (D.5)
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The term P(X |Yk, I) in Eq. D.5 denotes the probability that unemployment will be
reduced, if the candidate Yk has been chosen as president. This is multiplied by
the probability that the candidate Yk will win the election, which is P(Yk|I). This
product constitutes the joint probability that the unemployment will be reduced
and the candidate Yk will win the election. Summing over all possibilities makes
the result independent of whoever becomes president.

Equation D.4 represents the continuum limit of Eq. D.5 where we consider an
arbitrarily large number of propositions.

Descriptive, Bayes’ theorem (Eq. D.3) can be understood as:

P(hypothesis|data, I) ∝ P(data|hypothesis, I) · P(hypothesis, I) . (D.6)

Often the probability of the hypothesis given the data is hard to infer, whereas a
better chance is given to estimate the probability of the data, if the hypothesis was
true. This relation is exactly the power of Bayes’ theorem.

An instructive example is given in Hütt and Dehnert (2006): A betimes unfair
casino which makes use of two kinds of dice. One fair dice W1 is used in 99% of
the cases:

W1 : P(W1|I) = 0.99 and P(i|W1, I) =
1

6
, i = 1, ..., 6 (D.7)

where the relevant background information, e.g. that the dice is used in 99% of
the cases and that it is fair is absorbed in I . With a frequency of 1% an unfair dice
is used:

W2 : P(W2|I) = 0.01 and

P(6|W2, I) =
1

2
and (D.8)

P(i|W2, I) =
1− P(6|W2, I)

5
=

1

10
, i = 1, ..., 5

Now we suppose that we have chosen one of the dice and have thrown 3 times
a six. Asking for the posterior probability that these three sixes have been thrown
with the unfair dice P(W2|D, I) with the data D = 6, 6, 6 we can set up Bayes’
theorem:

P(W2|D, I) =
P(D|W2, I) · P(W2|I)

P(D|I) . (D.9)

We can split up Eq. D.9 and calculate the terms separately: The prior probability is
given above:

P(W2|I) = 0.01 . (D.10)
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The likelihood constitutes:

P(D|W2, I) =

3∏
i=1

P(6|W2, I) =

-
1

2

.3

=
1

8
. (D.11)

The evidence for the data D, which is in fact a normalisation constant, is observed
as:

P(D|I) = P(D, W1|I) + P(D, W2|I) (D.12)

= P(D|W1, I) · P(W1|I) + P(D|W2, I) · P(W2|I) (D.13)

=

-
1

2

.3

· 0.01+
-

1

6

.3

· 0.99 (D.14)

= 0.005833 . (D.15)

Thus we can calculate the posterior probability:

P(W2|D, I) =
P(D|W2, I) · P(W2|I)

P(D|I) (D.16)

=
0.125 · 0.01

0.005833
(D.17)

= 0.21 (D.18)

This result shows, that even if three sixes have been thrown in a row it is more likely
that the fair dice has produced this series. This also demonstrates the importance
of the prior probability.
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E Bayesian model selection

Bayesian model selection presents in principle the counterpart to the hypothesis
testing in standard statistics. Here, the mathematical formalism of the model selec-
tion is shown, which can be applied to arbitrary models/hypotheses. We follow the
very comprehensive description in Sivia and Skilling (2006), where we also show
the derivation of the method for two hypotheses or models A and B, which can
easily be extended to more than two models.

The posterior probability of the hypothesis A, given the respective data D using
Bayes theorem is given by:

P(A|D, I) =
P(D|A, I) · P(A|I)

P(D|I) . (E.1)

where I describes certain relevant background information.
Usually the models are functions of certain parameters a = a1, a2, ..., an and

b = b1, b2, ..., bm, which are often fitted to the data. Regarding the problem of
model selection, the absolute magnitudes of the parameters a and b are mostly
irrelevant. For instance, if the model selection is between a Gaussian distribution
or a Lorentzian distribution, the position of the mean value does not influence the
choice of the model.

Thus the marginalization rule Eq. D.4 can be used to eliminate the irrelevant
parameters by integration:

P(A|D, I) =

∫
da P(D|A,a, I) · P(A,a|I)

P(D|I) (E.2)

Assuming logical independence of the prior probabilities of the hypothesis A and
the parameters a we can simplify Eq. E.3, which yields:

P(A|D, I) =

∫
da P(D|A,a, I) · P(a|I) · P(A|I)

P(D|I) (E.3)

In the same way the posterior for hypothesis B can be derived:

P(B|D, I) =

∫
db P(D|B,b, I) · P(b|I) · P(B|I)

P(D|I) (E.4)
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The denominator P(D|I) is the evidence (cf. Eqs. D.4 and D.5), which is a normal-
isation constant and given by:

P(D|I) = P(D|A, I) · P(A|I) + P(D|B, I) · P(B|I) . (E.5)

Often the prior probabilities of the hypotheses P(A|I) and P(B|I) are chosen as
equal, because none of them is preferred in the first place. In this case the priors of
the hypotheses cancel out.

The parameter priors P(a|I) and P(b|I) are chosen, in many times, as bounded
priors in the form of fully normalised uniform distribution:

P(p|I) =
�

1
pmax−pmin

If pmin < p< pmax

0 otherwise
p= a or b . (E.6)

The incorporation of prior probabilities is one major advantage of the Bayesian ap-
proach over the standard statistics. However if only very rare information about the
parameters is known the choice of the priors is a hard task. The main requirement
to the priors is, that they do not cut off any relevant probability space. Additionally,
the priors should not be too large, because then they are quite uninformative and
no longer advantageous.

The likelihoods P(D|A, I) and P(D|B, I) present the main part of the respective
hypothesis or model. For instance, if we would hypothesise, that our data D =

D1, ..., Dn follow a Gaussian normal distribution with parameters a = (μ,σ2) we
would use

P(D|A,μ,σ, I) =


σ
�

2π
�−N

exp

⎡⎣− 1

2σ2

N∑
t=1

(Dt −μ)2

⎤⎦ , (E.7)

as the likelihood for A. To calculate the posterior we have to integrate over μ and
σ in Eq. E.7.

In Bayesian model selection often the Bayes factor (BF) is used to decide between
the models. The Bayes factor is the ratio:

BF =
P(D|B, I) · P(B|I)
P(D|A, I) · P(A|I) . (E.8)

As mentioned above mostly P(A|I) = P(B|I), thus:

BF =
P(D|B, I)

P(D|A, I)
=

∫
db P(D|B,b, I)∫
da P(D|A,a, I)

. (E.9)

The Bayes factor gives the evidence against model A. Jeffreys (1939) has proposed
a scale for this evidence, which is still used today as a guideline (cf. Tab.5.1).
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Bayesian model selection is often used to decide between a simple and a more
complex model. This is the case for instance, if certain data are observed and
one wants to decide between fitting a polynomial of degree one or two to the
data. In the sense of minimising the residuals the more complex model is mostly
superior to the simple model, because it contains more parameters, which can be
adjusted to fit the data. But regarding the problem of over-fitting, the common
sense would mostly favour a polynomial of order one against e.g. a polynomial
of order 10, although it has the smaller residuals. This circumstance is known as
Ockhams Razor, a principle which recommends to choose the theory or model with
the fewest assumptions and postulates when multiple competing theories are equal
in describing respective phenomena. Ockhams Razor is naturally implemented in
the Bayesian concept, in such a way, that a theory is penalised for every additional
parameter automatically.

We can qualitatively derive the Ockham factor also shown in Sivia and Skilling
(2006) and Dose and Menzel (2004). If model B is e.g. the more complex polyno-
mial of degree two and model A is the simple polynomial of order one, there is one
more dimension to integrate for B denoted as bm. This contribution to the integral
is proportional to the width of the probability density function (pdf) P(B|D, I) in
this direction denoting as δbm. With P(bm|I) = 1/(bmmax

− bmmin
) = 1/�bm we see,

that the Ockham factor is ≈ δbm/�bm. This ratio is typically smaller than unity,
thus penalises model B for its additional parameter.
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F Analytical approximation – the matrices

Regarding Sect. 5.6, the quadratic Taylor series expansion of the logarithm of A’s
likelihood function Eq. 5.20 yields:

LA = LA(�p1)−
1

2
K ′

A
HA KA+ · · · , (F.1)

with

K ′
A
= p1− �p1 = (F.2)�

μp1− �μp1 μp2− �μp2 ωp − �ωp δp − �δp

σp1− �σp1 σp2 − �σp2

�
and

HA =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ 2 LA

∂ μ2
p1

∂ 2 LA

∂ μp1∂ μp2

∂ 2 LA

∂ μp1∂ ωp

∂ 2 LA

∂ μp1∂ δp

∂ 2 LA

∂ μp1∂ σp1

∂ 2 LA

∂ μp1∂ σp2

∂ 2 LA

∂ μp2∂ μp1

∂ 2 LA

∂ μ2
p2

∂ 2 LA

∂ μp2∂ ωp

∂ 2 LA

∂ μp2∂ δp

∂ 2 LA

∂ μp2∂ σp1

∂ 2 LA

∂ μp2∂ σp2

∂ 2 LA

∂ ωp∂ μp1

∂ 2 LA

∂ ωp∂ μp2

∂ 2 LA

∂ ω2
p

∂ 2 LA

∂ ωp∂ δp

∂ 2 LA

∂ ωp∂ σp1

∂ 2 LA

∂ ωp∂ σp2

∂ 2 LA

∂ δp∂ μp1

∂ 2 LA

∂ δp∂ μp2

∂ 2 LA

∂ δp∂ ωp

∂ 2 LA

∂ δ2
p

∂ 2 LA

∂ δp∂ σp1

∂ 2 LA

∂ δp∂ σp2

∂ 2 LA

∂ σp1∂ μp1

∂ 2 LA

∂ σp1∂ μp2

∂ 2 LA

∂ σp1∂ ωp

∂ 2 LA

∂ σp1∂ δp

∂ 2 LA

∂ σ2
p1

∂ 2 LA

∂ σp1∂ σp2

∂ 2 LA

∂ σp2∂ μp1

∂ 2 LA

∂ σp2∂ μp2

∂ 2 LA

∂ σp2∂ ωp

∂ 2 LA

∂ σp2∂ δp

∂ 2 LA

∂ σp2∂ σp1

∂ 2 LA

∂ σ2
p2

,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(F.3)

which is

HA =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1�σ2
p1

0
∑

X1t�σ2
p1

∑
Ut�σ2
p1

2�σp1
0

0 �2�σ2
p2

∑
X2t�σ2
p2

0 0 2�σp2∑
X1t�σ2
p1

∑
X2t�σ2
p2

∑
X 2

1t�σ2
p1
+

∑
X 2

2t�σ2
p2

∑
Ut X1t�σ2

p1

2
∑
εp1t X1t�σ3

p1

2
∑
εp2t X2t�σ3

p2∑
Ut�σ2
p1

0
∑

X1t Ut�σ2
p1

∑
U2

t�σ2
p1

2
∑
εp1t Ut�σ3

p1
0

2�σp1
0

2
∑
εp1t X1t�σ3

p1

2
∑
εp1t Ut�σ3

p1

2�1�σ2
p1

0

0 2�σ2
p2

2
∑
εp2t X2t�σ3

p2
0 0 2�2�σ2

p2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(F.4)
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Analogues the quadratic Taylor series expansion of the logarithm of B’s likelihood
function Eq. 5.21 yields:

LB = LB(�p2)−
1

2
K ′

B
HB KB + · · · , (F.5)

with

K ′
B
= p2− �p2 = (F.6)�

μ1− �μ1 μ2− �μ2 ω1− �ω1 ω2 − �ω2 δ− �δ
σ1− �σ1 σ2 − �σ2

�
and

HB =
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(F.7)

which is
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