a

to be published at the Seventh Conference on Aviation, Range, and Aerospace Meteorology 77th AMS
Annual Meeting, 2-7 February 1997, Long Beach, CA

9.19 AUTOMATION OF AVIATION FORECASTS - THE PROJECTS AUTO-TAF AND
AUTO-GAFOR

Klaus Knupffer *
Meteo Service GmbH Berlin, Germany

1. INTRODUCTION

Meteo Service develops and implements statistical
weather forecasting systems for interested weather
services (e.g. Kniipffer 1993, 1995). The company has
developed a comprehensive software system aiming at
the automation of aviation weather forecasts in close
cooperation with the German Weather Service. It has
been implemented in 1996 and consists of the
components TAF-guidance, Auto-TAF and Auto-
GAFOR which are described in sections 2. 3 and 4. The
TAF-guidance is a Model Output Statistics (MOS)
system which produces forecasts for a specialized TAF
oriented predictand set using a specialized predietor set.
The Auto-TAF and Auto-GAFOR components translate
TAF-guidance matrix outputs into TAFs and GAFORs
complying with WMO and ICAO regulations.

2. TAF-GUIDANCE

2.1 General Aspects

TAF-guidances are MOS forecasts for a special set of
elements to be forecasted in TAFs and GAFORs. The
MOS regression equations have been derived based on
more than 4 vears of data of the European Model (EM,
developed by the German Weather Service, horizontal
resolution about 50 km) and observations (SYNOP) for
about 100 stations separately for four seasons.

The TAF-guidance predictand set contains the
categorical and probabilistic information needed for the
automatic generation of TAFs and GAFORs. Table 1
shows an example of a TAF-guidance. Much care has
been dedicated to the proper definition of the
predictands (left column) in order to meet the special
TAF and GAFOR needs and to make the encoding as
easy as possible. The predictand name P_BKN<1500ft
1s to read as "Probability of ceiling below 1500 feet".
Predictands are the result of a linear combination of
predictors. The regression algonthm selects and
weightens them. Table 2 shows the operational scheme
of TAF-guidance production.
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! OBS ! VORHERSAGEN MOS
PREDIKTAND ! 08z ! 09z 12z 15z 18z 21z
DD ! 22t 22 23 25 25 29
FF /kt ' 10! 11 10 10 9 7
FF_MAX GUST ! ' 17 20 26 23 18
P MAX GST>25 ! 0! 12 29 52 38 17
PMAX GST>40 ! 0! 0 1 5 2 0
' 1
Tl /C ' 13! 14 15 16 14 13
Td !o13 ! 12 11 11 11 12
1 1
VIS / 100m ! OK ! OK OK OK OK OK
PVis< 8km ! 0! 0 1 1 0 0
PVvis<c Skm ! 0! 0 1 1 0 0
PVis< 3km ! 0! 0 1 1 0 0
P Vis<1.5km ! O0Ot! 0 0O 0 0 O
P Vis<800m ! 0! O 0 0O 0 0
P Vis<400m ! 0! 0 O0 O 0 0
P Vis<200m ! O! 0 0 0O 0 0
] 1
P ww STRATIF ! 0! 23 14 5 2 11
Pww SHOWER ! 0! 5 16 30 30 11
P Cb % ' 0! 2 11 39 36 10
Pww THSTORM ! 0! 0 2 17 15 1
Pww RECVCY ! 0! 9 24 23 19 16
1 1
P ANY PRCPTN ! 0 ! 28 30 35 32 22
P ww LIQUID ! 0! 28 30 35 32 21
Pww FREZING ! 0! 0 0 0 0 0
PwwsSOLID ! 0! 0 0 0 0 1
1 !
RR/6hr mm/10 ! ! 11 10
P_RR/6h>.lmm ! ! 69 65
P_RR/6h>5 mm ! ! 12 "
' ! “: i
N Yo7t 7 6 6 4 4
Okta<5000ft ! 5t 5 5 3 1 1
Okta<1500ft ! 1! 1 1 0 0 1
Okta<1000ft ! 0! 0 0 0O 0 0
Okta< 500ft ! 0! 0 0O ©0 0 O
Okta< 200ft ! ©0! 0 0 O 0 O
! L]
P_BKN<5000ft ! 100 ! 55 20 0 0 O
P BKN<1500ft ! 0! 0 2 0 0 O
P_BKN<1000ft ! 0! 0 2 0 0 0
P BKN< S00ft ! 0! 0 0 O O O
P BKN< 200ft ! ©O! O O O 0 O
Ceiling ! ! 45 OK OK OK OK
1 '
P_OVC<5000ft ! 0! 0 O O 0 O
POVC< 200f€ ! 0! 0O 0O O 0O O
Overcast ! ! OK OK OK OK OK

Table 1: TAF-guidance. From left to right: Predictand name
('P_'means ' Probability of " ). last observation. forecasts.



Issue Last EM- Valid Time
hh.mm obs run TAF GAFOR
00.13 23 12 01-10
01.30 00 12 03-12
03.13 02 12 04-13
04.41 04 12 12-06 06-15
06.13 05 12 07-16
07.30 07 00 09-18
09.13 08 00 10-19
10.41 10 00 18-12 12-21
12.13 11 00 13-22
13.30 13 00 15-00
15.13 14 00 16-01
16.41 16 00 00-18
18.13 17 00 19-04
21.13 20 12 22-07
22.41 22 12 06-00

Table 2: TAF-guidance: Operational scheme
2.2 Predictors

Predictor sources are model forecasts and observations.
From the EM a set of direct model output (DMO)
parameters like T2m, precipitation, cloud cover
(different types, different layers), short and long wave
radiation and others are used together with the upper air
geopotential heights, temperatures and relative
humidities at 6 levels (1000, 950, 850, 700, 500 and
300 hPa).

Many predictors are transformed and defined according
to synoptical reasomng, for example:

- Geostrophic winds and voriticity indices are derived
from geopotential heights.

- Wet bulb potential temperatures are calculated from
the upper air predictors.

- Gradients and advections of several parameters are
calculated.

- Non-linearily transformed and vertically integrated
relative humidity values (vertical maximum,
average and certain products) have been added for
cloud cover (ceiling) and precipitation forecast. In
most cases the regression prefers these predictors
instead of using DMO cloud cover predictors.

- Thunderstorm indices (TotalTotals, Ko, S, Steinbeck,
Darkov and one synthetical index) are derived and
offered to the statistics as predictors for convective
predictands. Most of these indices are defined
between 850 and 500 hPa. Research has shown
that a re-defimtion of these traditional thunderstorm
indices for higher (700 up to 300 hPa) and lower
(925 to0 700 hPa) levels produces helpful predictors
for the forecasts of convective phenomena.

- Fog predictors. Non-linear transformations of spread,

wind speed and cloud cover are used for the
description of potential radiation fog situations.
Obstructions to visibility by precipitation are also
expressed as predictors.

Markov chain predictors (=conditional climatologies of
the predictands) have been provided by the German
Military Aviation Service for this project. These are
probabilities of certain (NATO-) colour states for
visibility and ceiling in dependence on the last
observation, the month, the weather type (cyclonal or
anticyclonal) and the orography class of a station based
on 30 years of observations. They are widely used by the
regression. Other predictors are: Persistency of the
statistical forecast, statistical forecasts of other elements,
predictors of valid time +/- 3 and +/- 6 hours, sine and
cosine of the day in year, step functions for handling
changes of the numerical model.

2.3 MOS Equations

The regression algorithm has been optimized with the
goal to minimize the RMSE of the predictands on
independent data. This optimization is based on resuits
of research on statistical overfitting. Details about this
can be found in Kniipffer (1996).

Tables 3a and 3b show examples of MOS equations for
the predictands "Probability of the occurence of
thunderstorm in the ww code" (P(Ths)) in summer and
"Maximum gust of the recent 3 hours" (FX3) in spring.
Both equations have been derived for forecasts issued at
10.41z. They are valid at 18z at the airport of
Frankfurt/Main. The following explanations shall help in
understanding how the prognostic information present at
issue time is combined to a forecast of these convective
phenomena.

Out of a set of about 150 potential predii%)rs the
regression algorithm first selects the predictor with the
highest linear correlation to the predictand. For P(Ths)
this 1s the Ko-Index, defined between 700 and 300 hPa
(index H) with a correlation coefficient of R(Pd) = 0.37.
Next, the regression algorithm selects the predictor
which has the highest correlation to the residual (=error)
of the one-predictor-equation. It is the S-index, defined
between 850 and 500 hPa (index M). This thunderstorm
index inhers independent prognostic information from
the first one. This can be seen from the fact that the
correlation of this predictor to the residual (R(Res)) 1s
only a bit smaller than its correlation to the predictand.
The next predictor which enters the regression equation
is the statistical forecast of any convective precipitation
which has been calculated earlier and is used now as a
potential predictor. Finally, the rotor of the geopotential
height field at 1000 hPa, normalized by the wind speed
at 1000 hPa has been selected bv the regression. The



St=10637 Issue=06z Lead Time=+012
EM-Run=12z Predictand=P(Ths) Summer

R(Pd) R(Res) Name

0.37 0.37 ThsKoH 13.2 2.48 32
0.36 0.30 ThssSM 7.2 4.76 30
0.28 0.18 StF(ww8) 1.5 0.22 19
0.29 0.15 Rotl/FF1 0.5 0.10 19

Constant -0.6
#Cases= 422 #PotPr=165

MV(Pd)= 3.4 RV = 27 RMSE =11.5
SD(Pd)=13.5 E(RVI)= 21 E(RMSI)=12.0

Table 3a: MOS Equation for Probability of Thunderstorm

rotor is defined as Laplacian applied to the 1000 hPa
geopotential height field.

To the right of the predictor names the expected
reduction of variance on independent data (dRVI) due to
inclusion of the predictor is shown. The regression
algorithm stops after the inclusion of the 4th predictor
because the correlation of the Sth predictor to the
residual of the 4-predictor-equation is lower than a
critical correlation coefficient R ;. R is a function of
the number of cases and the number of potential
predictors. Next to the right the regression coefficients
of the final regression equation are shown. The
regression equation for forecasting the probability of
thunderstorm is:

P(Ths) = -0.6 + 2.48*ThsKoH + 4.76*ThsSM
+ 0.22*StF(ww8) + 0.10*Rotl/FF1

The weight in the last column gives an indication on the
importance of a certain predictor in the regression
equation. The sum of the absolute values of all weights
of all predictors is 100%, the sign is that of the
regression coefficient. Weights are regression
coefficients normalized by their standard deviation. They
are helpful for the synoptic interpretation of a regression
equation: It can be seen that the final forecast for P(Ths)
is to 62% a combination of the two thunderstorm indices
with about equal weight (although not equal
coefficients). The remaining 38% are shared by the last
two predictors. Summary statistics of this equation can
be found in the lower part of the table. It can be seen that
the reduction of variance of the equation at the
development sample is 27%. The expected reduction of
variance on independent data is only 21%.

The regression equation for FX3 can be interpreted
synoptically in an analogous way: The best first guess
for FX3 is to multiply the statistical forecast for FF by a
factor of about 2. The following predictors can be
interpreted as corrections to this simple approach: If the

St=10637 1Issue=06z Lead Time=+012
EM-Run=12z Predictand=FX3 Spring

0.73 0.73 StF(FF) 53.2 1.%6 62
-0.28 -0.19 ThwWwAdvs85 1.5 -0.10 -15
0.35 0.18 ThsSL 1.3 0.59 13
Constant -0.7
#Cases= 379 #PotPr=156

MV (Pd)=14.2 RV = 58 RMSE = 5.7
SD(Pd)= 8.8 E(RVI)= 55 E(RMSI)= 5.9

Table 3b: MOS Equation for Maximum Gust

advection of wet bulb temperature at 850 hPa is positive
(typical warm front situation) then gusts are suppressed
and/or if it is negative (typical cold front situation) then
it is positive. Finally, if the S-Index, defined between
925 and 700 hPa (index L), indicates readiness of the
lower troposphere for convective activity then statistics
adds further knots to the forecast.

The complete set of MOS equations can be interpreted
as a synoptical knowledge base containing the following
basic aspects of making a forecast for a specific element
at a specific location in a specific season for a specific
lead time:

- usefulness of the predictors and combinations of
them for the local weather forecast;

- forecast accuracy of these predictors (systematical and
random errors of the numerical model forecast);

- weighten the prognostic information in an optimum
way.

This knowledge, fixed in about 2 million reeression
equations, is applied operationally by using th¢ MOS
equations for forecast production.

3. AUTO-TAF

3.1 Introduction and Example

TAFs are automatically generated based on the TAF-
guidance. The TAF encoding algorithm and verification
results are described in the next sections. An example of
the Auto-TAF derived from the guidance (table 1) is
shown in table 4.

EDDF 271019 24010KT 99399 SCTO045
PROB30 1319 25015G25KT 3000 TSRA
BKNO13CB

Table 4: Auto-TAF derived from the TAF-guidance (Table 1)



3.2 Auto-TAF Encoding Algorithm

The encoding of the TAF-Guidance into a TAF
complying with ICAO and WMO regulations is
controlled by two general criteria:

a) The loss of relevant information due to the encoding
shall be minimized.

b) The code should be as short as possible.

These criteria are conflicting. A bonus/penalty system
shall control the optimization in the process of Auto-
TAF generation. This system works as follows:

1. For each of the four weather groups (wind, visibility,
clouds and significant weather) an average forecast
for the valid time of the whole Auto-TAF is
produced.

2. Penalty points for this TAF are calculated as follows:
For each hour the difference between TAF-
guidance and Auto-TAF is squared and multiplied
by a weighting factor. The weighting factor is an
expression for the importance of the element and
can be configurated by the user (weather service).

3. A trigger starts to try to separate the weather groups
into two (or three, if the weather element has its
extremum somewhere in the middle of the valid
Time of the TAF) using BECMG.

4. Penalty points are re-calculated including penalty
points for creating new groups which can also be
configurated by the user. This allows the user to
control the average and maximum length of the
Auto-TAF.

3. The most effective change (with the highest reduction
of penalty points) 1s executed and the system goes
back to point 2.

6. If there is no useful BECMG to add anvmore then
the system tries to put together BECMGs into FM.
If the reduction of penalty points due to the
reduction of the number of groups is higher than the
addition of penalty points due to loss of fit between
Auto-TAF and TAF-guidance then FM is used.

7. The system continues with including PROB and
TEMPO. TEMPO is interpreted as probability of
40%, and there are also possibilities to express
lower probabilities than 30% by using TEMPO
PROB or PROB TEMPO. The lowest probability
which can be expressed by using TEMPO PROB30
18 12%. This approach is used in the TAF
verification scheme of the German Weather Service

which has been developed and described by Balzer
(1994). The penalty point system is also applied to
the probabilities. The algorithm always finds out
the most efficient PROB or TEMPO group to add
to the TAF. Efficiency is defined by the user in a
configuration file.

8. Finally, the most efficient addition to the TAF saves
less penalty points than the creation of additional
TAF code would add. Then the TAF of optimum
length has been found and the process of TAF
generation is stopped.

The points 1 to 8 only describe the main processing.
There are many details which require a lot of
consideration and effort but can be handled using the
penalty point system. For example, inconsistencies
between the weather elements may occur at certain time
steps in certain situations. These can be detected and
then be punished with penalty points such that they will
not occur any further.

In a first attempt to put these principles into practice
Meteo Service has implemented an encoding program at
the German Weather Service which produces
syntactically correct TAFs. As far as it was to implement
easily the principles above have been considered in this
program.

3.3 Verification

The Auto-TAFs have been recepted surprisingly
positive by the forecasting community. However, first
verification results (Balzer, 1996) showed substantial
deficiencies of this implementation. Comparative
verification has been undertaken using the TAF
verification scheme of the German Weather Service
(Balzer, 1994) for more than 2000 TAFs issued in July
1996 for 17 places in Germany. The three methods
compared are the forecaster, Auto-TAF and p Qétency.

In figure 1 the RMSE curves for wind speed are shown:
The forecasters and persistency curves show normal
behaviour. The RMSE increases with increasing lead
time. However, Auto-TAF has its optimum 5 hours
ahead and the RMSE of the 1 hour forecast is higher
than the RMSE of the 5 hours and even the 9 hours
forecast. The reason for this is obvious: The trigger of
the encoding algorithm works too conservative and
produces rarely more than one wind group for the whole
9 hours lead time. Thus, the wind speed is the averaged
wind speed of these 9 hours, and the value in the centre
of these 9 hours (5 hours) has the lowest deviation from
this average, on the average. On the other hand it can be
seen that beyond 2 hours ahead Auto-TAF produces the
best wind speed forecasts.
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Figure 2 shows the same verification for visibilitv. A
relative minimum at a lead time of 5 hours can also be
found. The forecaster and persistency are better than
Auto-TAF on the average. The TAF-guidance produces
better visibility forecasts than persistency because
persistency is one of the predictors for the guidance.
Therefore it is likely that - especially in the first four
hours - still too much information is lost in the process
of encoding.

Figures 1 and 2 show better performance of persistency
(lead time = -1 h) than the forecaster in the very short
range. This 1s the effect of focussing the TAFs to lead
times bevond 1 hour: The forecaster expects the pilot to
be able to interpolate between the last METAR and the
second TAF hour and keeps the TAF simpler this wav.

4. AUTO-GAFOR

GAFORs based on the TAF-guidances of representative
stations for a GAFOR area are automatically generated.
For each area single GAFOR codes based on onlv
visibility, ceiling and the combined code (Index) are
produced using four different definitions:

- Prevailing (50%):= Code belonging to the "expected"
flight conditions with 50% chance of better and
50% chance of worse conditions, averaged over the
representative non-mountain stations.

- Variable (X%): = Code belonging to flight conditions
with X% chance of worse conditions, averaged
over the representative non-mountain stations. X is
variable and can be changed by the user (weather
service).

- Minimum (50%): = Code belonging to the "expected"
flight conditions of a fictive station with the worst
conditions of all representative non-mountain
stations.

- Mountain (50%): = Optionally, if there are mountain
stations in the GAFOR area, for these stations a
GAFOR is produced separatelv. Mountain stations
are considered not to be representative for the
GAFORs.

The GAFORs of the area in which the example airport
Frankfurt/Main is situated are shown in table 5.

Issue-Time GA Visibility <Ceiling Index
1996052707 42 PREVAILING(50%) CC CC O0OCC o ¢ C C
1996052707 42 VARIABLE_ (30%) CCCC DDOO D1 DL O O
1996052707 42 MINIMUM (508) CCCC 0000 o 0 0 O
1996052707 42 BERG_10635(50%) X CCC X X CC X X C C

Table 5: Auto-GAFOR generated from TAF-guidances issued
for different stations in GAFOR Area 42. The columns are:
Obs(07z) and forecasts valid from 9-11, 11-13 and 13-15z.

5. OUTLOOK

The Auto-TAF and Auto-GAFOR systems have a high
potential for automation of the production of aviation
forecasts. The automatic forecasts are expecte%@ be of
equal or better accuracy than the human‘forecasts on the
average. Completely automation of TAF and GAFOR
production 1s not the goal, but 80% of all forecast
situations may not need human correction anymore when
the deficiencies of this system are removed. Especially in
complicated situations the forecaster should be able to
add value to the automatic forecasts. The weak point of
the whole system 1s currently the TAF encoding
algorithm which can be improved considerably within
the near future. Attempts for improving the TAF-
guidance will be directed towards the extended use of
conditional chmatologies of the predictands in
dependence of predictor values. This shall help to
improve the capability of the linear regression algorithm
to consider non-linear facts. The inclusion of the output
of a boundary layer model which produces categorical
forecasts of the elements needed in Auto-TAFs would
also be desirable.



In view of the possibility to produce high quality
statistical forecasts of the elements forecasted in a TAF
automatically, the aviation community might think over
the current regulations for TAF production. Instead of
loosing information in the process of translating the
TAF-guidance TAF syntax it might be better to produce
graphics with time series of the elements forecasted in
the guidance, perhaps with most severe weather in red.

Acknowledgements

This work was done under contract of the German
Weather Service. Thanks to the engagement of Bernd
Richter and the contributions of Konrad Balzer in many
fruitful discussions it was possible to reach this state of
the art within relatively short time. Many thanks are
finally also directed to my colleague Dik Haalman who
has written the TAF-encoding software and who was
involved in many helpful discusstons during this work.

6. REFERENCES

Balzer, K., 1994: TAF-Verifikation - Eine
Dokumentation der Methodik, DWD, Potsdam

Balzer, K., 1996: First Comparative Verification of
Auto-TAFs, personal communication, DWD,
Potsdam

Knupffer, K., 1993: Recent Developments in Statistical
Weather Forecasting - Implications on
Institutionalization, Operational Services and
Marketing. Preprint Volume: First European
Conference on Applications of Meteorology,
27th September - 1st October, Oxford (UK)

Kniupffer, K., 1995: Statistical Weather Forecasting
Systems for the German Weather Service and the
Swedish Meteorological and Hydrological
Institute. Preprint Volume: 2nd European Con-

Jerence on Applications of Meteorology, Septem-
ber 25-29, Toulouse, 132-135

Kniipffer, K., 1996: Methodical and Predictability
Aspects of MOS Systems. Preprint Volume: 73th
Conference on Probability and Statistics in
Atmospheric Sciences. February 21-23, San
Francisco, Califormia, 190-197

-

In view of the possibility to produce high quality
statistical forecasts of the elements forecasted in a TAF
automatically, the aviation community might think over
the current regulations for TAF production. Instead of
loosing information in the. process of translating the
TAF-guidance TAF syntax it might be better to produce
graphics with time series of the elements forecasted in
the guidance, perhaps with most severe weather in red.

Acknowledgements

This work was done under contract of the German
Weather Service. Thanks to the engagement of Bernd
Richter and the contributions of Konrad Balzer in many
fruitful discussions it was possible to reach this state of
the art within relatively short time. Many thanks are
finally also directed to my colleague Dik Haalman who
has written the TAF-encoding software and who was
involved in many helpful discussions during this work.

6. REFERENCES

Balzer, K., 1994: TAF-Verifikation - Eine
Dokumentation der Methodik, DWD, Potsdam

Balzer, K., 1996: First Comparative Verification of
Auto-TAFs, personal communication, DWD,
Potsdam

Kniipffer, K., 1993: Recent Developments in Statistical
Weather Forecasting - Implications on
Institutionalization, Operational Services and
Marketing. Preprint Volume: First European
Conference on Applications of Meteorology,
27th September - 1st October, Oxford (UK)

Knipffer, K., 1995: Statistical Weather Forecasting
Systems for the German Weather Service and the
Swedish Meteorological gl Hydrological
Institute. Preprint Volume: 2nd European Con-

Jerence on Applications of Meteorology, Septem-
ber 25-29, Toulouse, 132-135

Kniipffer, K., 1996: Methodical and Predictability
Aspects of MOS Systems. Preprint Volume: /3th
Conference on Probability and Statistics in
Atmospheric Sciences. February 21-23, San
Francisco, California, 190-197



