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1. INTRODUCTION

Meteo Service was founded in 1994. The
company is specialized in development of statistical
weather forecasting systems for interested weather
services. The methodical basis are advanced versions
of common interpretation methods like MOS or
Kaiman filtering.

A review of the projects implemented so far is
given in section 2. The problem of statistical ovexfitting
is described in section 3. itis closely connected with
the question of determining the opfimum number of
predictors in regression equations. Results of g
predictability study are presented in section 4.
Predictability is expressed there in ferms of reduction of
variance of the automatic forecast as compared to
an oplimurm combination of persistency and climate
as reference forecast. This predictability measure
allows for an estimation of the usefulness of the whole
automadtic forecasting system consisting of the
numerical model and its statistical interpretation for
local weather element forecasting.

2. PROJECTS
2.1 Overview

The following statistical weather forecasting systems
have been developed and implermented during the
last years with the methods outiined below:

11992: MOS syster based on ECMWF for Meteo

_ Consuit Wageningen (the Netherlands),

1993: Kalman filter based on the German European
Modedt (EM) for the Deutscher Wetterdienst (DWD),

1995: MOS system based on the EM for the automatic
production of TAF guidance for the DWD (Auto-
TAF),

1995: Comprehensive MOS system based on the
ECMWF model for the Swedish Meteorological
and Hydralogical Institute (SMHI).

Some information on these systems can be found in

Knipffer (1993 and 1995).
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Generally, Meteo Setvice recommends to apply
MQOS systerns instead of Kalman fitters if there is g
situation of choice. Reasons for this are as follows:

(1) Kalman applications can only take into account a
very limited number of predictors for stability
reasons. No predictor selection is possible.

{2) A Kalman fifter forgets quickly important information
from the past. The higher the adapiivity the
quicker it forgets. But most of the information
regarding the relafionships between MOS
predictors and predictands is model
independent and should not be forgotten by the
forecasting system.

(3) There are indications that the effect of model
changes on MOS equations is sometimes
overestimated: Different attempts to Kalman fitter
results of statistical forecasting systems did not
lead to any significant improvement.

2.2 MOS Systerns

According to the experiences gained so far the
design of a MOS system is first and foremost a
synoptical challange: The better the preparation of
the predictors and predictands the better are the
results. Preparation comprises all aspects of data
qudiity control and linear and non-linear
fransformations. They aliow to design a system based
on linear regression as non-linear as desired (Glahn,
1989). Non-finear fransformations range from the
application of simple analytical functions up to s
designing independent modules which arebased o‘n
knowledge of physics which are statistically optimized.
An exarmple for this are modules for snow
accumulation and snow melt developed for the SMHI
project (see predictor group G in table 2). It is a non-
linear combination of QPF/24h and spot time values
of 12m, Abs_Err_T2m,P(ww_RR),P(ww_Solid). Empirical
constants like snow meiting rate depending on
femperature are part of the definition of these
predictors and are optimized empirically. The quality
of snow forecasts has increased remarkably after the
infroduction of these modules,



The idea of including statistical forecasts into the
predictor set is based on investigations by Saha and
van den Dool (1988). They found that the skill of
numerically produced forecasts can be improved in
the extended medium fange by using persistency of
the numerical forecast for day X-1 instead of the
forecast for day X. Persistencies of statistical forecasts
which are valid one time step (3, 6 or 12 hjor24n
before the valid time of the forecast are the most
frequently used predictors of our MOS systemns.,
Furthermore, statistical forecasts of selected other
predictands are included info the predictor set. E.g. in
the Auto-TAF project the statistical forecast of P(Cb) is
used os predictor for P(Ths).

Temperature forecasts are very important in the
SMHI system. Therefore 4 additional femperature
predictands have been defined: DMO_12m - T2m,
1_850 - T2m, ThW_850 - T2m and Tv_1000_925-12m
(Thw_850: wet bulb potential tfemperature in 850 hPq,
Tv_1000_925: Averaged virtual temperature of the
layer belween 1000 and 925 hPa). These are
differences between reasonable first guess
temperature predictors and observed temperatures.
The final temperature forecast is a combination of the

forecasts of the 5 temperature predictands, weighted
according fo the RMSE stdtistics at the developmentat
sample. For most flat land stations the summer
temperature forecasts are mainly based on the
predictand Tv_1000_925 - T2m because they show
the lowest RMSE, Tempeiature forecasts are
supplemented by a forecast of the forecast error. This
has been done by defining the absolute error of the
12m forecast as a new predictand which then is
statistically forecasted. Thus, an error estimation can
be given which dependends on the station, the
season and the curent and forecasted weather
situation,

Changes of the numerical model in the
developmental sample are handled using binary
predictors which are equal to 1 before the date of the
maodel change and zero thereatter. This removes the
consequences of changes of (non-conditional)
systematical errors of predictors, There are several
other special features in the Meteo Service MOS
systern which are not described here. Table 1 provides
a general description of both the SMHI and the Auto-
TAF MOS system. Table 2 contains predictands and
predictors of both projects.

DWD: Auto-TAF

SMHI

Numerical model

EM (00 and 12 UTC run)

ECMWF (00 and 12 UTC run)

Horizontal resolution 55 km

ca. 100 km (T+3,..., 48 h)
ca. 200 km (T+54,...,180 h)

Development sample 01/92 - 06/95

01/92 - 02/95

4,10,16,22 UTC (Long TAF)

Number of stations ca. 130 in Germany ca. 150: 100 in Sweden
50 in other Europe
Issue times T 0,3,..18,21 UTC (Short TAF) 00 UTC: 12 UTC Run

06 UTC: 00 UTC Run

Forecasting lead times 1) T+3,6,9,12 h

T+8,11..2326 h (Long TAF)

T+3,6....,33,36,42,..,90,96,
96,108....,168,180 h

(Short TAF)

Number of predictands ca. 50 ca. 50 ”

Number of potential predictors ca. 200 ca. 200

Further statistical No Kalman filter combination with other

post-processing statistical forecasts based on
ECMWF and HIRLAM

Table 1: Characteristics of the MOS Projects Auto-TAF and SMHI(ECMWF)

1) Lead times are related to issue times T. For the Auto-TAF (DWD) project, the forecasts issued between 8 and

20 UTCare based on the 00 UTC run, the others on

the 12 UTC run of the EM.

(00 UTC)
T+3.6...33,36,39..60,66 h (06 UTC)




Predictands Predictors and predictor types Predictands
AUlO-TAF both projects SMHI
72m 2m
Td A: Original mode! predictors Abs_Em_T2m
T_Min
DD - Temperature, geopotential height and rel. humidity (RH) at T_Max
FF 1000, 925, 850, 700, 500, 300 hPa
FX_Max_Gust - - DMO temperature, wind, clouds, precipitation, EM: iong and DD
FX_Max Mean short wave radiation FF
P(FX>FF+10kt) FX_Max_Gust
B: Derived mode! predictors P(FX>14my/s)
CidCov< 200ft P(FX>24my/s)
CidCov< 500ft - Geostrophic wind (uv.ff)
CldCov<1000ft - Vorticity index derived from geopotential heights in 1000 CldCov (N)
CldCov<1500ft and 500 hPa CClow (NL)
CldCov<5000ft - Gradients of Thw_850, DMO_T2m (u,v.absolute value)
CldCov Total - Advection of Thw_850, DMO_T12m and vorticity in 500 hPa P{N>2)
- Grid binary predictors defived from DMO wind and P(N>5)
PBKN < 200ft) precipitation for probabilistic predictands P(N=8)
P(BKN< 500ft) - Non-linearily fransformed, vertically integrated RH values
P(BKN < 1000ft) {(maxdmum, average, certain products) Cld-Base (CiB)
P(BKN <1500ft) - Thunderstom indices P(CIB<2000m)
P(BKN < 5000ft) P(CiB<1000m)
C: Predictors of Valid time VI+At and VT+2At P(CIB<300m)
P(OVC < 200f) P(CIB<100m)
POVC < 500ft) - At=Time interval between neighbouring Vis
POVC<1000t) - A few predictand specific pre-selecied predictors only PW_RR_Any)
P(OVC <15001t) P(W_RR_Strat)
P(OVC <5000tt) D: Persistency of the predictand: PW_RR_Conv)
P(W_RR_Ths)
P(Cb) - tWo most recent observations of the predictand,
- Most recent predictand value of the valid hour of the forecast P(ww_RR)
P(ww_RR) Piww_RR_Solid)
P(ww_Strat) E: Ofther statistical forecasts: RR_Infensity_ww
Pww_Conv) P(nt>1mmy/h)
P(ww_Ths) - Persistency of the statistical forecast,
- Statistical forecast of predictand specific pre-selected other QPF/6h
Plww_Liq) predictands P(RR>0mm/6h)
Piww_Fz) PRR>1mmyéh)
P(ww_Sol) F: Date dependent predictors: P(RR>5mmy6h)
RR/6h - Hamonic functions: Sin(k*f(day)) and Cos{k*f(day) QPF/12h
PRR/6h>.1Tmm) k=1,2,3; f(day)=2m*DayinYear/365 P(RR>0mmy/12h)
P{RR/6h>5 mm) - Binary predictors: equal to 1 before the date of a modet P(RR>1mm/12h)
change and equal fo 0 thereafter P(RR>5mmy/1 oty
Vis '
P(Vis< 200m) G: Special predictors QPF/24h)
P{Vis< 500m) P{RR>0mmy24h)
P{Vis< 800m) - Auto-TAF: Conditional climatologies of colour states {(Markov P(RR>1mmy/24h)
P(Vis<1.5km) chain forecasts) based on 27 years of observations; used for P(RR>5mmy24h)
P{Vis<3 km) categorical and probabilistic celling and visibility predictands.
P(Vis<5 km) - SMHI: snow accumulation and snow meiting modules for snow Vis
cover forecasts. P(Vis<1000m)

Table 2: Predictors and Predictands of the Auto-TAF and SMHI MOS Projects



their averaged predictability. Temperature and wind
show the highest predictability followed by
precipitation, clouds and visibility, No predictability is
Obtained for the prediction of fare events. Figure 1
shows the RV(SIF.Ref) values for the groups above.
Only temperature forecasts show significant skill as
compared fo the reference forecast in the medium
fange. Wind forecasts show about equally good skill in
the short range but it decreases more rapidly with
increasing fead time., Thus, a 6 days termperature
forecast has about the same skill as a 3 days wind
forecastand a days precipitation forecast., Forecasts
for rare events are on the other extreme: No significant
skill can be observed af any lead fime on the
average.

RV (StF,Ref)/ %

24 48 72
Forecasting lead time/h from 12 UTC

Figures 2 and 3 show similar RV curves for the
predictands 12m and total cloud cover, Comparisons
with pure DMO forecasts are made. The resolution in
lead time is increased as compared to figure 1,

Abbrev. Predictands Predictabifity

temp 2m, Tmax, Tmin > 8 days

wind uv.ff 6.7 days

RR/12h QPF/12h, all POP/12h 5.0 days

P(RR_ww) Hourly precipitation predictands 5.0 days
based on ww code

Cid, Vis All cloud and visibilty predictands 5.2 days
except for kast row

Cid, Vis P{CIB<100m) and P{Vis<1000mj no

e events

Table 7: Groups of predictands and their predictability

"

120 144 (68 |9

Figure 1: Predictabiiity study: Reduction of variance of statistical forecasts as compared fo an optimum combination of persistency and

climatologicat expectance,




2.3 Kalman Fifter

The Meteo Service Kalman filter is an extension of
the standard Kalman filter algorithm as described in
Simonson (1991). Investigations have shown that it
. seems 10 be impossible o find an analytical solution
for defermining an appropriate adaptivity of the filter
coefficients a prion. Therefore a developmental
sampie of about 100 days is used for an empirical
estimation of the optimum adaption speed of the filter
coefficients. This optimization is done for each station,
element and lead time separately. The elements to
be forecasted by the DWD application are T2m, Trin,
Tmax, Td, dd, ff and N (total cloud cover). The
structure of the Kalman filter equations is:

Kalman_Fc = Const(f) + Coeff(t) * DMO_Fc M

The Kalman fitter was extended with a method
which dllows to apply the filter coefficients at places
without ocbservations. For this, a representativity study
was pefformed. If resutted in an algorithm which
assigns the five most representative stations to any
given place in the forecast areq. Representativity
between two places is a composition of the following
measures:

(1) geographical distance (1kmy,

(2) the difference between the deviation in model
height and real height (1m),

(3) their diifference in geographical height  (3m),

(4) a factor gained from a station combination matrix.

The length units in brackets indicate equivalent
influences. Measure (2) is important for the distinction
between hill stations and valley stations. The matrix (4
contains factors which are applied 1o the result of the
combination of (1) to (3) in dependence on the
surface characteristics: sea points, coastal places or
Inland places.

For operational application at any place a
weighted average of the filter coefficients of the five
most representative stations to this place is applied.
Systematical verifications of this approach were
performed. For this purpose each station for which
Kalman fitter coefficients were developed was
considered as a place without filter coefficients, The
result of the Kalman Filter application was compared
with the application of the mixed filter coefficients of
the representative stations. This verification, based on
5 months and 60 inland stations, showed that there is
no loss in Kalman fitter forecast quaiity for temperature
and cloud cover forecasts. The effect on wind speed
was more remarkably: The reduction of variance of
the Kalman filter forecasts as compared to pure DMO
decreased to about half the original amount when
interpolated coefficients were applied instead of the
original ones.

Anyway, this approach allowed for improving DMO
forecasts at any location in the forecast area.

3. REGRESSION: METHODICAL ASPECTS

3.1 Artificial Skill

Any predictor in a regression equation is (befter:
may be) a source of useful information and is (for sure)
a source of statistical overfitting. Statistical overfitting of
a regression equation can be expressed as
(expected) artificial skifl AS:

AS = ( RMSE' - RMSE® ) / RMSEP (2)

RMSE' is the expected RMSE of the predictand at
independent data, RMSE® is the RMSE of the
predictand at the developmental sample.

Different methods to quantify AS are derived and
discussed in this section, The results are used for
practicat design of the regression algorithm. The
artificial skill depends on

- the sample size (number of cases n),

- the number p of predictors (including the regression
constant) in the regression equation,

- the number pp of potential predictors o choose
from.

First, the influence of p is examined in a situation
without predictor selection: all potential predictors are
used in the regression (p=pp). Next, the influence of
pp in a situation of choosing one predictor out of a
predictor set of pp potential predictors is investigated,
A combination of the resuits allows for determining
when to stop including additional predictors into a
regression equation and aliows for iImportant
conclusions for MOS system design.

3.2 Monte Carlo Simuldtions: p=pp

Monte Carlo simulations have been performed in
order to quantify the artificial skili under the condition
P=pp. Regression equations based on random
numbers (Ran} In the range [0,1] have been defBd
for combinations of n and p. The true regression
equation for -« is known in this case : y =E(Ran)
=0.5. The arlificial skift can be decomposed into two
parts:

1) AS®: Artificial Skill of the developmentat equation as
compared to the tue equation:

AS® = (RMSE' - RMSE® }/RMSE® - (3)

RMSE': RMSE of the true regression equation.



n 20 56 | 100 200 500 1000

pp
1 23 14 10 07 05 .03
5 42 26 18 13 .08 06
10 .48 .30 21 15 09 .07

100 | 66 | .41 29 20 | a3 .09

1000 | .82 51 36 25 16 a1

Table 5. ciifical corelation R in dependence on the sample
size n and the number of potential predictors pp
according to equation (9) (Enke, 1988) with
confidence level $=0.18

3.4 Example ond Conclusion

An example for the application of the critical
correlation R for determining the optimum number of
predictors in a foward selection dlgaiithm is shown in
fable 6. The predictors are listed in the order of their
selection. From the left to the right the following values
are fisted: Mean value (MV), standard deviation (SD),
Correlation of the predictor to the predictand {r(Pd},
correlation of the predictor to the residual of the
equation with p-1 predictors (1(Res), predictor names
and units, : expected reduction of variance at
independent data of the equation with p predictors as
compared fo the equationwithp-1 predictors (ARVY).
RMSE® and RMSE": as in equation ( 2 ). Coef: 0-5:
Regression coefficients of the 0-5 predictor equations,
The predictor selection stopped when IRes) < R.
Calculations for expected RMSE and RV values at
independent data are based on R. E.g. ARV! can be
derived from ARVPwhich is part of the development
statistics as follows:

ARV = (ARVP -R2) /(1 -R2) (10)

The number of selected predictors depends much on
the information value of the predictor set and thus on
the predictability of the predictand. There are
equations with more than 10 predictors e.g. for short

range temperature forecasts as well as many
equations with only one predictor for predictands with
lithe predictability.

It is interesting 1o note that selection of a certain
number of predictors leads o a higher total artificial
skill of a regression equation than an a prior
determingtion of the same number of predictors.
Therefore a mixed approach is applied: First a
regression equation with a few fixed predictors is
calculated with RMSE' according to ( 7 }. Then the
forward dlgorithm described above is applied.

4. PREDICTABILITY STUDY

A predictability study based on the ECMWF
model has been carnied out. The perfformance of
statisticat forecasts {SiF) is compared to a simple
reference forecast (Ref) which is an opfimized
combination of persistency and climatological
expectance of the predictand. This allows for a
qualitative estimation of the benefit of the whole
process of producing automatiically local weather
forecasts consisting of numerical weather forecast
and statistical intepretation. A second purpose is to
discuss the quality of pure DMO forecasts in this
context, For forecast evaluation the RV measure is
used;

RV(SIFRef)  =100% * (1 - MSEI(SIF) / MSE(Ref) )
RVIDMO,Ref) =100% * ( 1 - MSE(DMO) / MSE(Ref))  (11)

Predictability is defined as the lead time when
RV(SF,Ref) is 10%.The predictability study ist based on
a set of 32 fiat land stations with minimum distance of
100 km to the nearest sea coast or mountain areq.
Most of them are Swedish stations. This selection has
been done in order to allow for a fair evaluation of
DMO forecasts which are inferpolated from grid points
fo stations. Results of lead times around 24, 48, ...192
hours and of summer and winter equations are
averaged. 6 groups of predictands with similar
predictability characteristics are considered. Table 7
contains the predictands belonging to the groups and

) "

Station: 10381 (Berlin-Dahlemn) Predictand: T2m /0.1 K ECMWF-Run: 122 n.546 pp:105
Issue Time: 01z Valid Time: 3z Season: Summer R:0.13

MV SD rPd) r{Res)Name Unit ARV RMSEC RMSE' Coef: 0 1 2 3 4 5

1.0 00 000 - Constant 0.1K - 4534 4535 -4.50 -20.63 -17.22 -18.68 -22.93
1278 468 097 097 Pers_Pd 0z 0.1K 93.79 11.26 11.30 094 095 093 080 0.78
58.7 17.1 -0.01 0.38 RH_Ver Av 3z % 13.20 10.40 10.53 025 024 0.19 0.5
0.6 708 -0.39 021 Sin_Day 0.01 3.41 10.14 10.34 004 001 001
1083 394 088 0.17 Thw_925 62 0.1K 1090 949 9.76 0.19 0.23
255 102 -0.01 037 DMO _FF_10m 320.1 rrys 191 932 967 0.20

Table 6: Example for a regression equation. Explanations: see text above



2) AS': Artificial skill appearnng as damage due fo the
application of these equations instead of using
the true equation at independent data:

AS' = (RMSE' - RMSE' ) / RMSE' (4)

The resuilfs of the Monte Carlo simulations for AS® and
AS' are shown in table 3.

p 4 8 16 32

n A" AS | A AS | A" AS | AS® ag
32 Mv {5573 |12 13 {40 41 [« >108

D |39 75 7 1 13 24 |2 >100
64 MV 2535 [62 70 |15 16 | a0 44

sD]183s8 3.0 5.3 6 9 8 17

size and number of predictors:

RMSE' = RMSE® * n/(n-p) (7)
The quantified arfificial skill is according fo (2) and (7):

AS=p/(n-p) (8)

Table 4 compares the results of the Monte-Cario
simulations for AS {as can be derived from AS® and AS
in table 3 with respect to equations (2), (3} and (4) )
with the slightty modified Lorenz approximation (8} .
The resuits are similar. This should allow for practical
application of equation (7).

p 4 8 16 32

g n MC Lo MC Lo MC Lo MC Lo

128 MV {11 15 |27 32 |6.7 69 15 15

sD 1.0 22 |14 27 |23 38 2 4 32 13 14 27 33 99 100 © oo

256 MV | 59 87 14 16 {32 33 |65 65 64 6.0 6.6 14 14 33 33 102 100

SD 47 95 107 14 12 20 |15 25
128 27 32 6.0 6.6 14 14 32 33

512 MV | .30 51 J0 89 116 16 {32 32
SD .26 52 | 34 64 o5 10 |07 1.3 256 1515 3.1 32 6.6 6.6 13 14
1024MV | 16 36 | .36 44 | .77 78 |15 15 512 82 .79 1615 32 3.2 65 646

SO |15 30 | .22 35 | .27 48 |04 04
1024 52 .39 81 .79 1615 30 32

Table 3: Decomposed Atificial skils AS® and AS' (in %) at the
dependent and independent sample: Mean values
(MV) and standard deviation (SD) of these skills gained
from 160 individual Monte-Carlo regression
experiments per table fieid.

Important results are;

- AS® and AS are of the same magnitude.

-Thereisashongcorrelaﬁonbe’fweenAScndp
(positive) and AS and n (negative).

- High 8D in the magnitude of MV indicates that the
results of the individual experiments differ a lof.

An analytical description of AS in terms of pandn
can be derived based on conclusions drawn by Carr
(1988). Referiing to research of Lorenz (1956, 1977)
on non-correlated variables he found:

MSE® = (1 -p/n)* MSE' (5)
MSE' = (1 + p/(n-p-1)} * MSE' (6)

where MSE is equal to RMSE2 and p+1inCamis
replaced by p here because the constant is not
considered as predictor by Can. Equation (6) does not
provide an interpretable resuit for n=p. Therefore and
for reasons of simplicity the term n-p-1 is replaced by
n-p. This has little effect on typical MOS applications
where n»p. Using this slightly modified equation (6)
together with (5) results in the following formula for the
estimation of the RMSE at independent data based
on the RMSE at the developmentat sample, sample

Table 4: artificial skill values AS (in %) of the Monte Carlo
simulations (MC) and according fo slightly modified
Lorenz approximation {Lo) , equation (8).

3.3 Predicior Selection: pp>p

Enke (1988) investigated the effect of selecting
one predictor out of a pool of potential predictors on
artificial skill. i is based on modifications of classical
significance testing with respect to the sifuation of
predictor choice in a foreward regression scheme., He
derived an approximative formula for a critical
conelation coefficient R in dependence on a given
confidence level S for predictor selection:

(_blz __S_ )0,6135
R—P [

yn-1

R can be interprefed as threshold for predictor
selection or rejection in a forward regression scheme.
The application of standard values (0.01 or 0.05) for S
resulted in values for R which appeared to be rather
high. The question of the optimum vaiue for S is an
interesting subject of further research. Currently, a
value of 0.18 s used in our regression scheme. Table 5
shows the ciifical comelation coefficients R which
controls the number of predictors in the regression
equation in dependence on n and pp.




