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ABSTRACT

Statistical weather forecasting is one branch of objective weather
forecasting, the other branch being numerical weather prediction. For
forecast projections of a very few hours up to a few days, numerical
prediction and statistical techniques can be combined to give better
forecasts of sensible weather elements than can either branch of objec-
tive forecasting alone.

This paper reviews some of the techniques that can be used to
develop statistical forecasting systems, and summarizes the experience
of the Techniques Development Laboratory in applying these techniques
to the operations of the National Weather Service.

1. INTRODUCTION

Statistical weather forecasting, in its broadest sense, has
undoubtedly been practiced for thousands of years. All that is
necessary is for someone to collect some data, someone to process it,
and someone to use the results to make a forecast. Ancient man,
seeing a dark cloud approaching and thinking that rain was likely,
would be practicing statistical weather forecasting even if he had no
knowledge of the physical processes involved. However, in this
chapter we use the term statistical weather forecasting to mean fore-
casting through the use of a formal statistical analysis of the data,
with the results of that analysis being clearly stated.

Statistical forecasting is a branch of objective weather fore-
casting, the other branch being numerical weather prediction. Allen
and Vernon (1951) have defined an objective forecast as "... a fore-
cast which does not depend for its accuracy upon the forecasting
experience or the subjective judgment of the meteorologist using it.
Strictly speaking, an objective system is one which can produce one
and only one forecast from a specific set of data." (Subjective
judgment is, of course, used in the development of the system.)
Occasionally, these restrictions are relaxed slightly or some sub-
jectivity may enter into the definition of "a specific set of data."
For instance, an observation of temperature at a certain location may
be needed as input to an objective scheme, and this observation may
not be available for some reason. It may, then, have to be estimated
from other data. Even though this estimate is made subjectively and
requires skill on the part of the meteorologist, the forecast would

probably still be called abjective.

Some statistical techniques are.very simple, whereas other pro-
cedures are more complicated. Various forms of scatter diagrams and

histograms fall into the first category. Discriminant analysis and
logit analysis are examples of the latter category.
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In the early years of operational numerical weather prediction,
competition rather than cooperation dominated the relationship
between those individuals engaged in developing statistical models
and those researchers concerned with developing numerical models.
Each group thought that its approach was the best way to proceed and
that the other branch of objective weather prediction was not
necessary. Even though the barriers between the two groups have not
yet vanished, each group has become much more tolerant of the other
group's viewpoint. Statistical modelers now use the results from
(rather than compete with) numerical models, and numerical modelers
recognize the usefulness of properly applied statistical procedures.

In this chapter, we will review the three general methods of
application of statistical models and describe the statistical tech-
niques that have been applied to weather prediction. Emphasis will
be placed on those techniques that have been used operationally.
Other discussions of statistical models employed in objective weather
forecasting can be found in Allen and Vernon (1951), Gringorten
(1955), Panofsky and Brier (1958), U. S. Navy (1963), Glahn (1965),
and Miller (1977).

2. METHODS OF APPLICATION
2.1 Classical Method

Before the days of numerical models, statistical techniques
necessarily incorporated the time lag. That is, if one wanted to
develop a scheme for forecasting the maximum (max) temperature for
tomorrow, the input would consist only of observational data avail-
able at the time that the forecast was to be made. This situation
can be expressed as

Yo = f1(Xg)s (1)
e )

where Y, is the estimate ( of the predictand (dependent
variable) Y at time t and X, is a vector of observational data

(independent variables) at time 0. (The observations are not
necessarily all made at time O but must be available at that time.)
This technique has become known as the "classical" approach for lack
of a better name (Klein, 1969). In application, the input is the
same as in development.

2.2 Perfect Prog Method

As numerical models were implemented and improved, it was recog-
nized that their output must be exploited to the greatest possible
extent. However, these models did not predict many of the weather
variables with which users were concerned - for instance, max
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temperature. This situation led to the development of the perfect
prog (prog for prognostic) technique (Klein et al., 1959).

A concurrent relationship between the predictand variable and
the predictor variables is developed, which can be expressed as

?0 = fz(&o): (2)

where YO is the estimate of the predictand Y at time O and X, is

a vector of observations of variables that can be predicted by
numerical models. The time relationship need not be exactly con-
current, but it is much more nearly so than in the classical tech-
nique. Even though ?0 js an estimate, it is not a "forecast" in

the sense of "looking ahead"; it is more appropriately called a
"specification."

~

In appHcation,__)gt is inserted into Eq. (2) to provide a fore-
cast ?t:

V= f,(%,)- (3)

The vectorit is obtained from numerical model outpuff“‘This

approach assumes that the model output is "perfect" (hence, the name
“perfect prog").

2.3 Model Output Statistics Method

Although the perfect prog technique makes use of numerical model
output, it is not necessarily true that the statistical relationship
between Y and X at time O is the best relationship for time t when
Xt is estimated by numerical models as in Eq. (3). In order to

overcome this problem, the model output statistics (MOS) technique
was developed (Glahn and Lowry, 1972). -In this approach, a sample of
model output is collected and a statistical relationship is devel-
oped, which can be expressed as

Ty = 303, (4)

where Qt is the estimate of the predictand Y at time t and_Xt is

a vector of forecasts from numerical models. The numerical que]
predictions_)gt need not be limited to time t but could be valid

either before or after time t; however, the projection times of the
different variables will usually be grouped around t. In applica-
tion, Eq. (4) is used as developed.
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2.4 Comparison of Classical, Perfect Prog, and MOS Techniques

Table 1 summarizes the development and application aspects of
the three techniques. Since the classical technique does not depend
on numerical models, it is most useful for very short-range fore-
casting. The strength of most numerical models lies in predicting
events several hours to a few days in advance. For predictions of up
to 4 hours, say, simple statistical models and even persistence may
be quite good in comparison to numerical models or statistical fore-
casts derived from them. The classical technique is relatively
simple to use, observations are usually abundant for model develop-
ment, and there is no dependence on a numerical model to complicate
the application.

For many purposes, the perfect prog technique gives quite good
results. Since Eq. (2) is based entirely on observations {or simple
calculations made from them), a large data sample usually can be
obtained to ensure a stable relationship. (A stable relationship is
one that will give similar results on dependent and independent
data.) The availability of observations also may allow useful strat-
ifications of the data. That is, different relationships can be
developed for different months of the year, hours of the day, etc.

In addition, as numerical models become more accurate, forecasts
based on Eq. (3) will improve even without redevelopment of the func-
tional relationship fzc

For medium range forecasting, MOS is the best technique if (a) a
sufficient sample of model output can be obtained for development and
(b) the model does not undergo major changes. Use of MOS usually
requires more planning than the other techniques because the model
output desired may not be saved without special arrangements. The
major disadvantage is that a relationship f3 developed for one model

may not hold for another model. Therefore, if the operational model
is changed substantially, a new relationship should be developed.
This redevelopment can be done only after the new model has been used
for a long enough period to obtain an adequate data sample. At the
time that this chapter was written, changes in the National Weather
Service (NWS) models being employed by the National Meteorological
Center (NMC) have not presented serious problems in MOS apptlications.

Changes in numerical models that might materially affect MOS
applications could be any of three types: (a) the model produces the
same output variables, but the overall skill is higher; (b} the model
produces the same output variables and the overall skill is about the
same, but the error characteristics are different; or (¢) the model
produces different output variables with or without an increase in
skill. (We assume that a new model would not be implemented if the
skill level was below that of the old model.) In the first case, use
of the new model would probably decrease the skill of MOS forecasts
slightly (without redevelopment) unless the model skill was increased
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Table 1.

Development and application equations for the classical,
perfect prog, and MOS techniques.

Development/application

Technique equation
Classical ' ¥, = F1(Xg)
Perfect prog 90'= fz(lo)/?t = fg(zt)
MOS Yt fq (.)Et)

268



considerably. If the skill did increase markedly, then the MOS

skill would probably also improve. For a new model with equal skill
but different error characteristics, the MOS skill would undoubtedly
decrease. If the new model didn't produce the same output variables,
the old variables would have to be estimated (by interpolation or
other computations from the new variables). A decrease in MOS skill
would likely result unless the new model was considerably more
skillful.

Even with these potential problems, it is likely that MOS will
be used operationally more than perfect prog and will produce better
forecasts for many years to come. At some point, some of the appli-
cations may shift to perfect prog. However, when the predictand is
a dichotomous event (e.g., precipitation/no precipitation) and the
statistical relationship estimates the probability of that event, MOS
will always be superior to perfect prog. MOS incorporates the
inaccuracies of the numerical model, and as the skill becomes small
for large projections (i.e., long lead times) the estimated proba-
bility will approach climatology. Perfect prog will not give this
result; that is, the possible range of predictions in the perfect
prog approach is just as great for long-time projections (say 5 days)
as for short-time projections (say 12 hours), unless the numerical
model itself becomes much smoother with time and perhaps approaches
climatology. Therefore, perfect prog probabilities will not be
reliable {i.e., will not correspond to observed relative frequen-
cies). Figure 1 shows schematically the relationship between MOS and
perfect prog probabilities as a function of projection.

Although relatively little experience to date has been obtained
in applying Eq. (4) to a model other than that on which it was deve-
Toped, the evidence available suggests that the decrease fin skill is
minimal. Major operational models share many of the same charac-
teristic errors - incorrect phase of systems at long projections,
missed cyclogenesis, etc. The forecasts prepared by two models fre-
quently Took more like one another than either looks like reality.
That is, major ervor characteristics for different models are simi-
lar. As Tong as this situation exists, relationships developed on
one model can be applied to another model without major loss in
skill.

A1l of the statistical models presented in the following sec-
tions, such as scatter diagrams or regression, can be used with any
of the techniques discussed above. In the following sections, an
estimate of a predictand may at times be called a "forecast" even
though no time projection is actually involved.

3. HISTOGRAMS
Perhaps the simplest statistical model one might apply is the

histogram. Figure 2 shows the relative frequency of frozen precipi-
tation at Salt Lake City as a function of the 1000-500 mb thickness

269



Probobery
o o
N

o
n
1

o
ol

o
1

Upper and lower
Upper and limits of perfect
lower limits of prog forecasts
MOS forecast.
— Climaotology
of event. \‘

Pvojection (days)

Figure 1. Schematic diagram of upper and lower limits of MOS and
perfect prog forecasts as a function of projection.

270



Relafive frequeney

@]
N

o
[os]

o
o

o
-

i

0.0

i

1

1]

7//

Yoz

;71;

_

5120 5200 5280 5360 5440 5520

Figure 2.

ThicKness (M)

Relative frequency of frozen precipitation at Salt Lake
City, Utah, as a function of forecas

ness (after Glahn and Bocchieri,

271

1975).

5600

5680

t 1000-500 mb thick-

5760



forecast by the primitive equation (PE) model (Shuman and Hovermale,
1968). The relative frequencies have been calculated for 40 m inter-
vals. The interval must be wide enough to encompass several cases in
the region of greatest concern and yet be small enough to give suf-
ficient detail to be useful. The intervals need not be the same
width.

The histogram can be applied directly. However, Figure 2 poses
a question: “Should the relative frequency for each thickness band
be used exactly as plotted?" This question really has two parts,
one involving smoothing and one involving interpolation. Is there
any reason to believe that the relative frequency should be higher
for the 5600-5640 m band than for the bands on either side? If not,
smoothing is suggested. Also, should one use 19% for 5441 m and jump
to 64% for 5439 m? If not, interpolation is suggested. In any case,
judicious use of histograms can produce a useful objective tool, and
a computer is not required for its development or use.

@

4. SCATTER DIAGRAMS

Another model rivaling the histogram in its simplicity is the
scatter diagram. It is primarily a noncomputer technique and was
used as early as the beginning of this century by Besson (1905). The
technique has also been called graphical regression and was studied
in detail by Brier (1946). It has been used extensively by the U.S.
Weather Bureau, now the National Weather Service, since the mid-
1940's and several papers appeared in the Monthly Weather Review
circa 1950 illustrating the use of this model. A typical paper from
this period is that by Thompson (1950).

In its simplest form, coordinate axes are established on a
diagram such that the ordinate represents the dependent variable or
predictand and the abscissa represents a single independent variable
or predictor. Points are then plotted on this diagram depicting the
available data sample. Finally a line can be drawn by eye which
seems to fit the data points. In application, a forecast of the pre-
dictand is found by reading the ordinate value of the line at the
abscissa value of the predictor. Such a completed diagram is shown
in Figure 3. :

Usually, however, one wants to use two or more predictors. 1In
this case, the coordinate axes should be the values of the pair of
predictors, and the predictand values are plotted at the points on
the diagram representing the data sample. An analysis is then made
of the plotted data. The analysis is subjective and will depend on
the skill of the analyst. The analyst must be careful not to "over
analyze" the data, especially in regions where few data points exist.
In general, the analysis should be rather smooth and, in case of
doubt, known physical relationships may furnish a key to correct
analysis.
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Figure 4 shows an example of a two-predictor scatter diagram
taken from Thompson (1950). Precipitation amount can be forecast
with Figure 4 and the observed values of the two predictors, Xq

(700 mb height at Oakland) and Xo (San Francisco minus Los Angeles

sea level pressure difference). If one wishes to use more than two
predictors, other diagrams can be plotted and analyzed. For
instance, predictors 3 and 4 can be combined on a diagram similar to
Figure 4. The predictand value "forecast" from Figure 4 can be
called predictor Xg. Similarly, the predictand value estimated from

X3 and Xg can be called Xg e Then Xg and Xg can be the coordinates

on another scatter diagram in which the actual predictand values are
plotted as a function of Xg and Xg. (A variation of this procedure

is to plot deviations between the preliminary estimates Xg and xg

and the actual values Y.) An analysis of these values will then
define estimates of Y given values of Xg and xg. Thompson (1950)

presents an example of a six-predictor scatter diagram procedure.

The scatter diagram model is very simple in principle, yet it
allows for any degree of complexity that the data warrant. Its suc-
cess will depend on the analyst's ability to choose meaningful pre-
dictors, as will the success of any technique. Thompson (1950)
offered the following comments concerning the analysis: "While the
meteorological relationships brought out by the primary graphical
combination of each pair of variables may ... be discussed from a
physical standpoint, and thereby the reasonableness of the isograms
checked, very little can be said about the secondary combinations.
Here the complexity of the joint relationships, as well as the prob-
able effect of other variables not considered in the integration,
defeats any attempt to supply a theoretical or physical justification
for the distribution of the isograms. Consequently the construction
of these charts must depend almost entirely upon an analysis of the
data." : '

Scatter diagram analysis is very useful when resources are
limited and only small amounts of data are available. It does not
lend itself easily to processing by electronic computer, and the
method itself implies hand analysis [although some individuals,
including Freeman (1961), have attempted to automate the process].
For this reason, other techniques are usually to be preferred when
samples consisting of several thousand cases and a computer are
available. Also, no reliable significance test exists for the
scatter diagram procedure to determine whether added predictors will
lead to increases in forecast accuracy on new data. Therefore, a
forecasting system based on scatter diagrams should always be tested
on new data if at all possible.
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5. REGRESSION

It has become increasingly clear during the last 20 years that
the use of large samples is very desirable in the solution of
meteorological prediction problems. Three reasons can be cited
for this conclusion. First, the autocorrelation of many meteoro-
lTogical variables does not approach zero unless observations are
taken quite some time apart. Therefore, the number of degrees of
freedom for such data is much less than the sample size. Second,
many variables usually can be found that possess a relationship to
the predictand, and one frequently wants to include - or at least _
test the desirability of including - a large number of these poten-
tial predictors. In the application of most models, this process
uses up many degrees of freedom.  Third, the distribution of the pre-
dictand is frequently highly skewed, so that the very weather situa-
tions that are most important to predict occur very infrequently. A
large sample is necessary to include a representative number of such
situations. ,

The use of large samples and the inclusion and testing of many
predictors necessitates the use of an electronic computer and a model
that lends itself to computer application. Linear regression is
such a model.

5.1 Simple Linear Regression
The simple linear regression model is of the form
Y=o+ BX + E,

where Y is the predictand, X is a predictor, o« and B are parameters,
and e is the error term. The predicted value of Y is Y, where

A

Y =a+ bX,
in which a and b are estimates of the parameters.

In this model, the sum of squares of the observed errors (i.e.,
the ei's) is minimized over a dependent sample of size n:

R n
. - Y-)2 =min I
i .

i=1

n o2
min =X es = min

2
(Y; - a - bX;)".
i=1 i ! !

It m>
L
-

Taking partial derivatives of Ze% with respect to a and b and setting
i
each derivative equal to zero yields the so-called normal equations:
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n
an +b I Xy - X Yy=0,
i=1 i=

n n o, n
a I X;+b IX5- IX¥;=0.
i=1 i=1 i=

Solving for a and b gives

This one-predictor model is useful for illustrative purposes and
can be applied to situations such as that shown in Figure 3.
Usually, however, several predictors need to be considered. As a
result, one is led to multiple Tinear regression.

5.2 Multiple Linear Regression

If we form matrices from data samples of size n for the predic-
tand and p predictors, then

1<l

x=X-

and

1<l

y=Y-
are nxp and nxl matrices, respectively, in which each column is the

deviation from the mean of the corresponding original variable.
Variance-covariance matrices can be calculated as follows:

§11 N X' X5

312 =501 =

=1
Soy n LY %y
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where a prime denotes a matrix transpose. The multiple regression
equation, derived in a manner analagous to the one-predictor case in
" Section 5.1, is

-<>

-1
= X517 57, - X S11 S1 *+ V. (5)

Associated with Eq. (5) are a reduction of variance (RV) and a
multiple correlation coefficient (R) that are defined as follows:

1
n

o~
1
ro
]1-—-
oM
_<
1
-
S
N

RY = R2 = o i

= variance of Y - error variance of Y
variance of Y

These quantities are easily calculated from the variance-covariance
matrices:

S, st s S, Si1s
Ry = R2 = 21 -5-11 212 _ 321211212
Sp7 3$

Regression analysis has been used extensively in meteorology for
many years. However, it wasn't until the age of electronic computers
that large data samples and many predictors could be handled easily.
Regression, as a mathematical model, can be used no matter what the
joint distribution of predictand and predictors, except that no pre-
dictor may be an exact linear function of one or more other predic-
tors. In that case, the inverse of_§11 could not be determined;

that is, it would be singular. For real meteorological data and
sample sizes much 1arger than the number of parameters (i.e., p + 1),
this problem seldom arises.

Under certain conditions, analysis of variance can be used for

testing the significance of the reduction of variance, RZ, and of
individual terms in the equation. The conditions are that the sample
be drawn randomly from a multivariate normal population and that no
preselection of variables be made using the same sample on which the

regression equation is developed. The F value corresponding to RZ
is calculated according to line 2 in Table 2. This calculated value

can then be compared to the tabled F value for a desired o level
(probability of Type I error) with p and n-p-1 degrees of freedom.
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Table 2. Analysis of variance table for reduction of variance asso-
ciated with multiple linear regression mode1.2

Sum ofb Degrees of  Mean b

Source squares fireedom square F value
Total 1 n-1
EE RZ (n-p-1)
. . . ? S
Regression equation - Rp p p >
p predictors (1-R%) p
- ) (R-RS_;) (n-p-1)
pth predictor in RP—R 1 i Rp-R 1 z
regression equation P P 1—Rp
) 1-R2
Residual (1—Rp) n-p-1 P
n-p-1

@patterned after Panofsky and Brier (1958).

bAll entries in these columns should be multiplied by né%. This
factor cancels out in computing F.
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Suppose RZ is significant in a particular situation, and one
wonders whether a particular predictor is really adding any predic-
tive information over and above the other p-1 predictors. Consider
that predictor as the last or pth predictor. Then the appropriate F
value is shown on 1ine 3 of Table 2 and has 1 and n-p-1 degrees of
freedom. This test is valid, under the conditions stated above, pro-
vided that the choice of which predictor to test is not based on an
analysis of the data sample. This topic will be discussed further in
Section 5.3. :

The model discussed in this section is a linear model, and other
models may be more appropriate. However, if the population distribu-
tion is multivariate normal, then this model is the best model that
can be found. If a researcher wants to “"screen" out from a much
larger set of possible predictors the p predictors to include in the
equation, then the approach described in the next section can be
used. :

5.3 Screening Regression

Screening regression, as the term is usually defined in meteor-
ology, combines multipie linear regression with an objective method
of selecting a "good" set of predictors to use in the equation from a
larger set of m potential predictors. Since regression finds the
solution that minimizes the estimated error variance on the dependent
sample, it is logical to choose a set of predictors that would be
better than any other set for reducing this error variance. However,
if p predictors were to be picked from a set of m predictors, then
the number of combinations for even a moderate value of m is quite
large (unless p is very small or approaches m). Specifically, the
number of such combinations is

m!

Co = 7 (m-p)T"

It is usually not feasible to compute all these combinations, so
some shortcut must be taken to find a "good" set that may not be the
"best” set.

Screening can be done in one of several ways. The simplest is
what may be called forward selection. This procedure consists of
first selecting the one predictor from the total set of m predictors
under consideration that reduces the variance of the predictand more
than any other possible predictor, then choosing the predictor that
together with the first one selected reduces the variance more than
any other such combination of two predictors, and continuing the
selection procedure on a "one at a time" basis until the additional
reduction of variance afforded by any predictor is very small. This
procedure insures that the first predictor selected is the best
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single predictor, but it does not insure that the first two chosen
are the best pair, etc. This stepwise selection was discussed as
early as 1940 by Wherry (1940) and was introduced into the meteoro-
logical literature by Miller (1958) following some unpublished work
by Bryan (1944).

The question arises as to how many predictors to choose. One
might be tempted, after selecting p-1 predictors, to test the addi-
tional reduction of variance given by the pth predictor using the F
value computed in the third line of Table 2. This procedure was
suggested by Lubin and Summerfield (1951) and is sometimes done.
However, it must be considered only as a stopping criterion. That
is, one must not attach any particular significance level to it. The
reason for this limitation is that the test is being performed on
the next best predictor and not on a predictor that has been selected
at random. :

Miller (1958) has suggested a modification to the standard F
test that compensates for the testing of the best of several
remaining potential predictors. Instead of using the critical value
F(l-a) at each selection step, he suggests using the value F*(l—u) =

Fl—a/(m—p+1) at the pth selection step with some desired probability

of Type I error a. This criterion is rather harsh, since it assumes
(approximately) that the (m-p+l) tests that could be performed at the
pth selection are independent and, in the absence of additional
complications, tends to lead to the selection of too few predictors
if some accepted value of « such as 0.05 is used (Zurndorfer and
Glahn, 1977). Additional complications could include highly nonnor-
mal distributions or non-zero autocorrelation for the predictors.

The test proposed by Miller (op. cit.) will also tend to compensate
for nonzero autocorrelations. However, it should be remembered that,
because of all the complications, this test is primarily a stopping
procedure and no exact level of significance should be attached to
it.

The decision as to the exact number of predictors to select is
many times overemphasized. The mean square error for independent
data s usually not very sensitive to the number of predictors in the
equation within rather broad limits. Figure 5 shows schematically.
the kind of results that have been obtained from experiments (e.g.,

see Bocchieri and Glahn, 1972). R2 on dependent data always
increases with the addition of another predictor but tends to "level
out" so that little is to be gained in terms of the mean square error
of the predictand by including more than, say, 12 terms. The mean
square error on test data need not decrease monotonically. A small
test sample will frequently cause the mean square ervor curve to be

irregular. Also, for a large number of predictors, the R? test
sample curve will usually turn downward. However, a broad, flat
maximum will generally be found where, for practical purposes, the
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predictions are of equal quality. For this reason, almost any
“practical” stopping procedure is quite adequate, such as (a) when
the added reduction of variance of the next predictor is less than
.005, (b) when 12 predictors have been selected, (c) when the reduc-
tion in mean square error is less than, say, 0.05°F for temperature
or 0.2 mph for wind speed, or (d) Miller's F?l—a)'

Another version of screening regression is to find the reduction
of variance for all m predictors, and then start eliminating predic-
tors one by one until some stopping criterion is met. This backward
elimination procedure also does not yield the unique best set, and
significance testing for it has been inadequately studied. However,
some simple stopping procedure similar to those methods described for
forward selection can be used. A complication could occur if one
predictor were an exact linear function of a set of other predictors.
Theng11 would be singular. This possibility is very unlikely with

real meteorological data, unless one were to actually formulate a
predictor from a linear relationship. For instance, one could
include only two of the following three predictors: 500 mb height,
1000 mb height, and 1000-500 mb thickness.

Still another algorithm combines the above two procedures.
Forward selection is done with an F test being performed at each
step. When the added reduction of variance is insufficient to be
judged significant, the procedure is stopped. However, between each
selection step, all the variables selected up to that point (and not
subsequently discarded) are tested for significance. The least
significant is discarded if it does not meet the test, and again all
those remaining are tested until none is discarded.

Forward selection screening regression has been used more than
any other computer-oriented model for statistical weather prediction.
Many studies were made at the Travelers Research Center, Inc. in the
Tate 1950's and early 1960's using this procedure in combination with
the classical approach. For instance, Veigas et al. (1958) produced
an objective method for predicting the behavior of hurricanes in the
western Atlantic and Gulf of Mexico that was subsequently used opera-
tionally by the National Weather Service. More recently, the
Techniques Development Laboratory (TDL) of the National Weather
Service has developed many operational products based on this model.
Most of these products involve the MOS technique, but some forecasts
are based on perfect prog and classical procedures. These present-
day uses of regression analysis are discussed in Section 11.

5.4 Regression Estimation of Event Probabilities
The screening regression model can be used when the predictand

is binary. For instance, the predictand might take on the value of 1
when an event occurred and O when it didn't. The regression
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equation, then, can be thought of as yielding the probability (or
relative frequency) of the event for realistic combinations of pre-
dictor values. This approach was used by Mook (1948) and Lund
(1955), but no extensive application was made of it until Miller
(1964) and others began using it at the Travelers Research Center in
the 1960's. They dubbed it REEP for regression estimation of event
probabilities. Miller (op. cit) realized that the probabilistic
model also held for multiple categories. For instance, if ceiling
height is divided into five mutually exclusive and exhaustive cate-
gories and each category is used to define a binary predictand, then
the set of five regression equations (all with the same predictors)
will give a set of probabilities, Pj» where 3p; =1 (i =1, ..., 5).
i

An important property of this model is that it minimizes the P-
score defined by Brier (1950), which has certain desirable charac-
teristics (Brier, op. cit.; Murphy, 1974) and which is frequently
used in probabilistic forecast verification (see Chapter 10).
Unfortunately, the individual P;'s are not constrained to the zero-

one interval. Selection of predictors can be made by choosing next

the predictor that contributed most to the R2 of any one of the cate-
gories. Significance tests based on assumptions of normality are not
appropriate. Experience has shown that, generally, a larger sample
is required to obtain stable results when the predictand is binary
than when it is continuous.

5.5 Binary Predictors

The screening regression model can be used when one or more of
the predictors are binary. A1l predictors were binary in the first
applications of REEP. An early reference to the use of binary vari-
ables in regression is Suits (1957), and Neter and Wasserman (1974)
give a good discussion of the subject.

A binary variable (sometimes called an indicator or dummy
variable) can arise naturally. For example, an observation may be
made in this format, as in the case of rain or no rain. In addition,
a continuous variable can also be "dummied"; this process is usually
carried out in one of the two ways indicated in Table 3. (Variables
are never really continuous, since only discrete values are used in
practice. However, temperature measured to the nearest degree 1is
quasi-continuous and will be considered to be continuous in this
chapter.) In transformation 1, each dummy variable indicates whether
or not the original variable has a value corresponding to its par-
ticular defining interval. In transformation 2, each dummy variable
indicates whether or not the original variable has a value less than
the upper limit of its particular defining interval. Note that any
one of the four dummy variables for transformation 1 is redundant
with the other three and, although all four could be screened (a
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Table 3. Two methods of transforming a continuous variable into
binary variables. In any particular column, ones and
seroes can be interchanged without affecting predictive

capability.

Binary variable
transformation 1

Original variable

Binary variable

transformation 2

i

2

category 1 2
1 1 0

0 1

3 0 0

4 0 0
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fourth would never be selected), only three (any three) can be
included in a regression equation. For transformation 2, only three
meaningful variables are possible; the fourth would always have the
same value., Dummy variable No. 1 corresponds to No. 1, and No. 4 to
No. 3, for transformations 1 and 2, respectively. However, Nos. 2
and 3 for transformation 1 have no match in transformation 2.

Any combination of three dummy variables for transformation 1
will give the same reduction of variance as the three dummy variables
for transformation 2. However, No. 2 for transformation 2 may be
better than any single predictor for transformation 1. When several
dummy variables are created from a continuous variable, careful con-
sideration should be given to which transformation to use. A predic-
tor such as No. 2 for transformation 1 treats a certain category of
the original variable one way and the categories on both sides of it
another way. This procedure may be appropriate if the predictand is
continuous and is a quadratic function of the original (undummied)
predictor or if the predictand is binary and was dummied by transfor-
mation 1. For instance, suppose a binary predictand represents
ceiling height from 1000 to 1900 feet at 1200 GMT. Then a binary
predictor representing that same ceiling interval at 0900 GMT would
be a good predictor. However, if the predictand is continuous, then
a few binary predictors defined by transformation 2 will usually
yield better results than the same number of predictors defined by
transformation 1.

Although dummy predictors have the potential of accommodating a
nonlinear relationship between the predictand and predictors, some
information is lost since all values within a defining interval are
treated the same way (unless each value is represented by a different
dummy variable). Also, it takes several binary predictors to provide
about the same information as one continuous predictor. The number
of binary variables to be defined for a given predictor is usually
quite arbitrary as is the interval to associate with each variable.
Traditional statistical significance tests are even less applicable
in this case, due both tc the binary nature of the variables and to
the unknown number of degrees of freedom used in choosing, say, five
out of eight possible dummy variables created from a single predic-
tor.

The use of all binary variables permits much more efficient com-
puter use, since one value need occupy only one bit rather than a
complete word and, in addition, faster logical rather than arithmetic
operations can be used in obtaining sums of squares and cross prod-
ucts. However, realization of this advantage usually requires con-
siderable programming effort and use of such a program would have to
be rather extensive before the effort would be worthwhile.
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5.6 Computed Predictors

Although regression as presented above is a linear model, non-
Tinear relationships can be incorporated through special computa-
tions. For instance, divergence is not observed but can be calcu-
lated from wind observations. In addition, a predictor can be
"Jinearized" in various ways. That is, it can be transformed in such
a way that it has a more nearly linear relationship with the predic-
tand than did the original variable. Consider again_the histogram
example shown in Figure 2. If we want to use several predictors,
including 1000-500 mb thickness, then we could include a transformed
or computed predictor representing the heights of the bars in Figure
2. The transformation could be exactly as indicated in Figure 2, or
a curve could be fit that would undoubtedly provide a variable that
would be more robust on independent data.

5.7 Orthogonal Predictors

We may have a problem in which we want to distill most of the
Tinear predictive information from a large set of variables without
using a large number of degrees of freedom. For instance, 1000-500
mb thickness values may be available at each of 25 stations sur-
rounding a station for which we wish to predict max temperature.

The predictors are highly correlated and we wouldn't want to include
all 25 in a regression equation. We could screen the 25 and select,
say, five. Another alternative is to transform the 25 variables into
another set of variables that are more efficient in terms of
retaining the large scale predictive information and discarding the
small scale "noise." Orthogonal functions can be used for this pur-
pose.

Assume that pressure values are available at each of m points
and at each of n times. At each point the mean over time can be
found and the deviations from the means put into an nxm matrix P.

The element P.. on the diagonal of-% (P'P) is the variance of the
pressure at the ith point and the element Pij is the covariance of
the pressures at the ith and jth points. The time series of k new
variables, represented by the nxk matrix U can be found by

Uu=P1,
where T is an mxk matrix of coefficients of k functions at m points.
The matrix T is an efficient transformation matrix if the columns
are orthogonal. Also, the total variance of the columns of U is
equal to the total variance of the columns of P if the columns of T
are orthonormal and k = m. Then

I1=1
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(I is a kxk identity matrix) and
tr(U'U) = tr(P'P),

where tr represents the trace of a matrix. The original pressure
deviations at the m points can be approximately reproduced from the
new functions by '

and, if k = m,

Several authors, including Wadsworth (1948), White et al.
(1958), and Jorgensen (1959), have adapted orthonormal Tschebyscheff
functions for this use. The m points occur in a rectangular array
and functions of degree zero through r and zero through s are used in
the two dimensions, respectively. The columns of T are then made up
of cross products of two functions. The function composed of the
function of degree zero in both directions represents the mean of the
m points. Functions composed of one function of degree zero and one
function of degree not zero represent patterns which vary in only one
direction. In general, the low degree functions represent large
scale features of the map, whereas the high degree functions repre-
sent small scale features.

Much of the variance of pressure, and of many other meteoro-
Togical variables, is explained by large'scale components. On the
other hand, it is the very small scale components that contain most
of the observational error and are the least predictable. If very
small scale features in the pressure map furnish much predictive
information for other variables, then it is usually not beneficial to
represent those features in terms of orthogonal functions.

Even though the transforming functions - the columns in T - are
orthogonal, the new variables - the columns in U - are not neces-
sarily orthogonal. Therefore, T is not as efficient as it might be,
and the regression constants which relate a predictand to the new
variables must be determined by considering the covariances between
those new variables as well as the variances. That is, it is neces-
sary to examine the complete matrix

1

n

The most efficient way of representing the linear information in

a set of data is through principal components. These functions were

introduced into meteorology by Lorenz (1956) who called them
Empirical Orthogonal Functions (EOFs). EOFs have been used to
study meteorological data and for predictive purposes by several

uy).
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researchers, including Gilman (1957), White et al. (1958), Glahn
(1962), and Grimmer (1963). In addition to

the condition

is also imposed here, where D is an mxm diagonal matrix. Since

U=PT,
substitution can be made to yield
Lrpe T -0
The matrix
1 pipy =
& (P'P) =R

is the covariance matrix of the original variables. Therefore,
T'RT=D.

The columns of T are the characteristic vectors and the corresponding
diagonal elements of D are the roots of the matrix R. The k columns
of T which correspond respectively to the k largest diagonal elements
of D explain a larger fraction of the total variance of the original

variables, %-tr(EﬂE), than any other k linear combinations of those
variables.

Regression estimates y of a predictand time series y (in terms
of deviations from the mean) can be found by

~

y=UA,

where A is the kxl vector of regression coefficients corresponding to
k of the new variables. The vector A is now easily determined from

21 pl
A=5 (07U ),

since the inversion of D is trivial.

It is worth noting that if the original variables are normalized
to unit variance, the characteristic vectors and roots will not in
general be the same as with the nonnormalized variables. For
instance, the pressure at a point in middle latitudes has a larger
variance than it does in low latitudes. If points from both regions
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are included without normalization, the columns of U having the
largest variances will be dominated by the middle latitude pres-
sures.

An advantage in the use of EOF's is that the points do not have
to be in any organized pattern spatially. Therefore, observations
taken at stations can be used directly rather than requiring the
Tield to be specified in terms of a grid before the orthogonal func-
tions are applied.

5.8 Normalized Variables

Although regression can be applied to variables with practically
any distribution, it is the optimum model if the variables have a
multivariate normal distribution. Boehm (1976) suggests that each
variable used in the analysis should be "transnormalized." That is,
some method such as histogram analysis or curve fitting should be
applied to each variable separately, both predictand and predictors,
so that the resulting transformed variable will have a (near) normal
distribution. Boehm (op. cit.) uses the term transnormalized to
highlight the fact that this transformation is not just subtraction
of the mean and division by the standard deviation. It is the same
transformation discussed by Panofsky and Brier (1958, p. 41). After
the regression analysis is performed on the normalized variables,
predictions of the normalized dependent variable can be made. Then
these values must be transformed back to the original variable.

6. DISCRIMINANT ANALYSIS

Certain meteorological variables do not lend themselves well to
prediction by linear regression due to their nonnumerical nature,
highly nonnormal distribution, or nonlinear relationships to the pre-
dictors. In such cases, multiple discriminant analysis (MDA) pro-
vides a useful tool that has been applied extensively to weather
forecasting problems by Miller (1962) and others at the Travelers
Research Center, Inc. .

Discriminant analysis was conceived by Fisher (1936) and first
brought into the Titerature by Barnard (1935). MDA refers specific-
ally to the Fisher analysis on more than two predictand groups.
Barnard (op. cit.) used the analysis on 4 groups, but she considered
only one discriminant function. Hotelling (1935) and others (Fisher,
op. cit.; Brier, 1940) evidently appreciated the possibility of more
than one function and mentioned the determinantal equation involved,
but the burden of calculations forbade extensive use of MDA until the
comp?ta§iona1 scheme of Bryan (1950) or electronic computers became
available. ‘
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For a given problem, there is a maximum of p or G-1 (whichever
is smaller) discriminant functions, where p is the number of predic-
tors and G the number of groups. These functions are mutually
uncorrelated and are found through the solution of the equations:

-1 B - s . -
(_"ﬂ E )‘\}_I_)_V_J p_a [J - 1> evos mm(p, G l)]

where W and B are respectively the matrices of within and between
groups sums of squares of the predictors, I is the identity matrix,
the Xj's (eigenvectors) are the coefficients in the discriminant

functions, and the kj's are the roots (eigenvalues) of the deter-
minantal equation

wls -l = o.

In the special case involving only two groups, only one function is
possible and its coefficients are proportional to those derived by
regression. Therefora, for this special case, the two analyses are
equivalent.

A significance test, which is a generalization of Mahalanobis’
Dz, for the predictand-predictors relationship based on large sample
theory has been developed by Rao (1952) and uses the statistic
G-1

Voo =n(tr WB) = 5,
j=1

pG
where n is the sample size and it is assumed that G-1 roots exist.
VpG is distributed as x2 with p(G-1) degrees of freedom provided
that the predictors are multivariate normal within each group and

that the covariance matrices for each group are identical.

The importance of each discriminant Function'ij is indicated by

jts associated root Age Since the number of discriminant functions

may be less than the minimum of p and G-1, the significance of each
root can be tested by an approximate procedure due to Bartlett
(1934). For each nonzero root, the test statistic

[n - (/2)(p + ©] In (1+ )
2

is computed. This statistic is approximately distributed as X with
p+G-2j degrees of freedom.

The selection of variables for MDA by screening has also been

described by Miller (1962). In the same way that the selection for
regression maximizes the F-statistic, the selection for MDA maximizes
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va' At each step, after p-1 predictors have been selected, the

quantity

i} |

is evaluated for each remaining possible predictor and the largest
value indicates the preferred variable. This statistic is con-

sidered to be distributed as x2 with G-1 degrees of freedom (Rao,

1952), and Miller (1962) suggests, as with regression, that the
critical value X21—a/(m—p+l) be used since the selection is not
random.

MDA as used in prediction can be considered to be a linear
transformation from a p-dimensional predictor space to a G-1 dimen-
sional discriminant space (assuming G-1 < p), such that the sample
points plotted in the discriminant space exhibit as much clustering
according to predictand category and as little dispersion from their
respective cluster centers as possible. There will be, then, G
regions in the discriminant space, one for each predictand category.

Let us consider the effect of the relationship between one of
the predictors and the predictand on this transformation and the
" desirability of using this predictor. Three possibilities can be
mentioned:

(a) It may be that a particular value of the predictor will
indicate only one predictand category, and that category
will be indicated by no other value of the predictor. This
situation is the most desirable. It does not matter how
the predictand categories are arranged on the predictor
scale; group 1 could be between group 4 and group 5 just as
well as anywhere else (see Figure 6). Thus, this type of
nonlinearity is accommodated by MDA, since no numerical
scale is associated with the predictand categories them-
selves.

(b) It may be that a low predictor value will indicate two dif-
ferent predictand categories. 1In this case the regions in
the discriminant space containing the points representing
these two predictand categories will be superimposed
(unless the effect of other predictors can spread them
apart), and the predictor will be worthless in discrimi-
nating between these two predictand categories. However,
the predictor could still be very useful in separating
these two predictand categories from all the rest and could
also distinguish between those remaining categories. No
transformation of the predictor before its inclusion in the
analysis would be useful in separating the superimposed
groups. See groups 3 and 4 in Figure 6 for an example of
this situation.
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Figure 6. Hypothetical relationships of predictand groups 1 through

5 to the predictor x.

See text for explanation.
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(c) 1t could happen that both Tow and high values of the pre-
dictor would indicate the same predictand category. This
situation is very undesirable since the predictor would
tend to spread the points in the discriminant space repre-
senting this predictand category and these points might
group themselves into two distinct regions (see group 2 in
Figure 6). This type of nonlinearity is not accommodated
by MDA, and a nonlinear transformation of the predictor is
indicated if it is to be used. In a screening procedure
where the raw variable is a possible predictor, it will
probably be overlooked as its nonlinear relationship to the
predictand will not be recognized.

Since the criterion for selecting the variables and for deter-
mining the functions themselves is to maximize the between to within
groups variance ratio, groups with many cases will highly influence
the results. This state of affairs is generally detrimental, except
in those cases in which the costs of misclassification are all equal
and the concern is only for the number of correct forecasts. Miller
(1962) has attempted to counteract the large group effect in predic-
tor selection by making the size of all groups equal to that of the
smallest group during the selection process and then using the com-
plete sample to determine the discriminant functions and probabil-
ities of misclassification.

Discriminant analysis can be considered to be complete when the
functions and their associated roots have been found. However, the
“problem of how to use these functions in probabilistic prediction of
the predictand groups still remains unspecified. Miller (1962) used
Bayes' theorem to find the a posteriori group probabilities from the
a priori group probabilities, which are estimated from the sample and

the assumed multivariate normal distribution of the discriminant
functions within each group. For the sample of meteorological data
considered by Miller (op. cit.), the multivariate normal assumption
proved to be untenable.

If the data do not appear to justify the use of a completely
parametric model, discriminant analysis can be used to map the p-
dimensional space into a G-1 or less dimensional space, and the con-
ditional probability distributions can be determined by other means.
If the dimensionality of the discriminant space is only 1 or 2, a
scatter diagram can be employed to determine how the G groups are
distributed within this space.

Miller (1962) found a nonparametric method described by Fix and
Hodges (1951) to be useful in determining the a posteriori probabili-
ties directly from the discriminant function values. At any point Y
within the discriminant space, the probability of each group can be
estimated by the relative frequency of that group occurring in the k
sample points closest to Y'. The value of k should be relatively
large but small compared to the sample size. The k closest points
can be defined in terms of the Euclidean distance. This procedure is
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essentially a smoothing process, and precautions must be taken to
ensure that the importance of the discriminant functions is taken
into account in this process. Specifically, an arbitrary metric has
been used to transform the discriminant space into a space in which
each function has zero mean and variance equal to Ajlxl. The dis-

tance between a point Y' and a sample point ¥ in this space can be
defined as

2 2172
B R R N CA TS )

§ - et 5 .
Al Oyl 1 03’2 1 O.Yj

where 8y_ is the standard deviation of the jth discriminant func-

1 2 ]
Moy, e e
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tion. This procedure usually produces extreme smoothing over the
Jeast important functions but retains the predictive information in
the more important functions.

The most extensive use and thorough testing of the MDA technique
in meteorology has been in the short range prediction of visibility
and ceiling height undertaken at the Travelers Research Center, Inc.
(e.g., see Enger et al., 19647 .

7. CANONICAL CORRELATION

Canonical correlation, first developed by Hote1lling (1936), is
a technique for finding orthogonal relationships between two sets of
variables. Consider a situation involving n observations of each of
p variables X, (1 =1, 2, ..., p) and of q variables Y; (1 =1, 2,

.., q). These observations represent points in a p*g dimensional
space and can be arranged_in the nxp matrix X and the nxq matrix Y.

The variables have means X, and'Vi, respectively, and deviations
from the mean are given by x; = X; - X; and yg = Yi = Yy New
variables x A, and y B (i=1, 2, ..., ), where r is less than or

equal to the smaller of p and g, can be formed such that their means
are zero and ‘

Ax'x A=nl, (6)
B'y'yB=nrl, (7)
A'x'yB=nh, (8)

where I is an rxr identity matrix,
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(9)

=
i
“

and A S A3 2 «eo < A Egs. (6) and (7) state that the variance of

each of the new variables is unity and each is uncorrelated with all
others in its respective set. Eqgs. (8) and (9), together with Egs.
(6) and (7), state that each,ﬁ_Ai is uncorrelated with each.x_ﬁj

except when i = j and then the correlation is Age

It can be shown [for instance, see Anderson (1958)] that the_ﬁi
(i=1, 2, ..., r) can be found from

1 2 e L
(S1 812 555 Sp1 - 2 1Ay =0

(providing_§11 and S,, are not singular), where the A; satisfy the
determinantal equation

-1 -1 2 =
1517 S12 855 S -2 11 = 0
and where
I
_S.l]_ 'ﬁ_)s.l(.’
' __1 ]
312 = 371 = 7 X'
and
1o
22 T XX
are the variance-covariance matrices. Then the_gi can be found from

- o1 -1
.B_ - .§.22 _5_21 A A
Alternatively, we could use
-1 -1 2 _
(S55 501 8971 832 - 25 1) B; = 0,

-1 -1 21 -
1592 Sp1 811 81 - ¥ 11 = 0,

and

- ¢! -1
A=5075,887".
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The latter equations are to be preferred if q <p, because the matrix
that must be diagonalized is then of a lesser dimension.

The "first" pair of functions, defined by the first column of
each A and B, have as large a correlation Ay as any other possible

pair of functions, each composed of a Tinear combination of the
original variables. Also, the "second" function pair has as large
a correlation %, as any other possible pair of functions, each

being composed of a linear combination of the original variables and
gach being uncorrelated with both members of the first pair.

Either set of new variables can be predicted in a least-squares
sense by the new variables in the other set. The prediction
equations are

(y B)

i
i<

AA
and

('m) =y
In addition, the original variables in one set can be predicted in a

Teast-squares sense by the new variables in the other set; for
example, by

[Re]

A.

y=xAAB'S,,. ' (10)
In the case that r = g, Eq. (10) can be written as

y=xansl (11)
Similar equations can be written for predicting X.

Eq (10) represents the prediction equation for each of the 91
in terms of all of the x.. One may want to relate one set of vari-
ables to the other set but include only a portion of the correlations
in A, perhaps those k correlations that are judged to be signifi-
cantly different from zero. An equation corresponding to Eq. (10)
can be written as

Y = x A MBS, (12)
where the rxr matrix A* has only k nonzero elements, the others
having been set equal to zero. Eq (12) has the effect of including a
contribution only from those k columns of A and k rows of B' corre-
sponding to the k nonzero correlations.

The prediction equations can be expressed in terms of the
original variables X; and Y;. For instance, Eq. (11) becomes
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Y=xatpl-Xansl+y. (13)

Discriminant analysis and multiple regression, including REEP, are
special cases of canonical correlation. For instance, when q = 1

Eq. (13) is the same as the least squares regression equation for a
single predictand [see Eq. (5)]. In addition, if the predictands
represent group membership in the same manner as for REEP, then Eqg.
(13) is the same as the set of REEP equations (see Glahn, 1968).
Therefore, canonical correlation has little to offer in a purely pre-
dictive sense over the simpler regression or discriminant analysis
(this statement is not meant to imply that canonical correlation is
not useful in studying relationships between sets of variables). One
possibility for canonical correlation in prediction does exist, and
that involves the use of Eq. (12). As stated previously, defining
EOFs on a set of predictors and using only those functions that
explain a non-trivial portion of the predictor variance as new pre-
dictors in a regression equation filters out predictor "noise" (of
course, one must be careful to ensure that it really s noise and not
good predictive information). Eq. (12) seems to provide a way of
filtering noise out of both the predictor and predictand sets and
could provide more stable prediction equations. However, we know of
no case where this possibility has been investigated. For further
discussion of canonical correlation and an example using meteorolog-
ical data, see Glahn (1968).

8. LOGIT MODEL

The logit model (Brelsford and Jones, 1967; Jones, 1968) pro-
vides a means of fitting a sigmoid or S-shaped curve to data when the
dependent variable is binary and the independent variable is con-
tinuous. From this model, the probability of the binary variable Y
having the value of one can be expressed as follows:

1
1+ exp(a + bx) ~

P(Y = 1]x) = (14)

The model can also be extended to several independent variables and
to several, rather than two, categories of a dependent variable.
Determination of the parameters [a and b in Eq. (14)] is usually more
difficult than determination of coefficients in a regression equa-
tion. Iterative procedures can be used or, if each specific value of
x in the sample is repeated and the relative frequency of the depen-
dent event 1is neither zero or one, then a more direct method of solu-
tion can be used for the following linearized form of Eq. (14):

1nCl—%—E) = a + bx.
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Usually, in meteorological applications, several predictors are to be
included, and this method of solution would require enough replica-
tions of each combination of predictor values to estimate the rela-
tive frequency of the predictand for that combination. We know of no
meteorological application where this method of solution for multiple
predictors has been used. For a discussion of this method, see Neter
and Wasserman (1974). ~

9. MAP TYPING

The concept of weather types arose early in the history of
meteorology. The aim is to define a partition of weather maps (or
sequences of maps), so that the differences between the maps (or
sequences) of one type are small compared to the differences between
maps (or sequences) of another type. Once a set of weather types has
been defined, it can be used in various ways to forecast specific
weather elements. Early work was done by Bowie and Weightman (1914)
who stratified storms by their movement. Average tracks, expected
direction, and average speeds were then computed. An historic deve-
Topment of weather types was done by Irving P. Krick at the Califor-
nia Institute of Technology (1943), leading to the identification of
the so-called CIT types. ‘

The determination of map types can be accomplished in many ways.
Initially, the methods employed were largely subjective, and even in
the application phase, the user had to sdecide” what type existed on
a given day. More recently, with the advent of the electronic com-
puter and the desire to process large quantities of data, objective
methods of classification have been developed. One such method that
has been rather extensively applied was developed by Lund (1963).

The example he used to explain the method involved the classification
of wintertime sea leval pressure maps over the northeastern U.5. The
steps involved in this method are:

Step 1. Correlate the sea level pressures on each map with the
corresponding pressures on all of the other maps in the
sample. That is, if each of 500 maps had 25 values of
pressure (which could be reported values at stations or
at grid points arrived at by an analysis of station
values), then each of the 500 maps would be correlated
with 499 other maps, the computations of the correla-
tion coefficient involving 25 pairs of values.

(%]
o+
1]
o
™

Select the map which has the most correlation coef-
ficients > 0.7 and designate it as Type A.

Step 3. Remove all of the cases that are correlated > 0.7 with
the Type A map, and select from the remaining maps the
one with the most correlations > 0.7. Designate this
map as Type B. '
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Step 4. Remove Type B cases, and repeat the process until only
a few cases with correlations > 0.7 remain.

In application, a map is classified according to the type with which
it correlates most highly. Of course, the 0.7 correlation criterion
stated above can be modified as desired.

- A problem in the use of map types is that a particular map may
not classify well into any of the defined types. In the Lund method,
after the definition of several types, a few cases generally will
remain that are not very similar to any other map in the sample.

Many times only one variable, such as sea level pressure, is
used to define the types. However, the evolution of weather systems
and the correspondence to predictand variables depend on more than
that one element. Other variables can be included in the definition
of types, but finding "good" types - that is, maps which resemble
gthegs in terms of all the considered variables - is then more dif-

icult.

A possible forecast aid employing map types is to define the
conditional precipitation probability at a station given that a par-
ticular map type exists. This procedure could involve a lag rela-
tionship, in which case the application would probably be to existing
maps. On the other hand, it could be a concurrent relationship, in
which case the application would probably be to numerical forecasts
of the variable(s) used to define the types. This latter approach
would be a perfect prog application. Augulis (1969) describes a
forecast aid developed along these Tines; it is still in use in the
western U.S.

10. ANALOGUES

The term analogue can be defined as follows: "In synoptic
meteorology, a past large-scale synoptic weather pattern which
resembles a given (usually current) situation in its essential
characteristics. The use of analogues as an aid in forecasting is
based upon the assumption that two similar synoptic weather patterns
will retain similarity through at least a short period of further
development" (American Meteorological Society, 1959). Analogues were
investigated comprehensively by Wadsworth (1948) and their use has
been discussed realistically by Willett (1951).

Selecting an analogue is much like selecting a weather type -
the idea is to choose one or more maps which are very similar to
other maps or to a particular map. Generally, map types of, say, sea
level pressure or 500 mb height are employed to forecast other
variables such as temperature or precipitation at specific points.
However, analogues of, say, sea level pressure and/or 500 mb height
may be used to forecast future states of those same variables over
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the areas for which the analogues are defined. In these days of
numerical prediction models, analogues appear to be of very limited
use.

11. PRESENT STATUS

The most concentrated effort today in statistical weather fore-
casting is at the Techniques Development Laboratory (TDL) of the U.S.
National Weather Service. TDL's objective systems, implemented by the
National Meteorological Center, produce about 600,000 forecasts daily
from about 90,000 regression and logit equations (as of 1 April 1981).
These forecasts are disseminated by teletypewriter and facsimile to
civilian and military weather stations and to non-government users
throughout the United States (Glahn, 1976). The elements being fore-
cast include probability of precipitation, precipitation type, pre-
cipitation amount (Bermowitz, 1975), surface wind at land stations
(Carter, 1975) and at marine stations and over the Great Lakes (Feit
and Pore, 1978), surface temperature and dew point (Dallavalle et al.,
1980), severe convective weather (Reap and Foster, 1979; Charba,
1979), cloud amount (Carter and Glahn, 1976), ceiling height and visi-
bility (Globokar, 1974), storm surge (Pore, 19763 Richardson and Pore,
1969), and beach erosion. Some of these current applications are
discussed briefly in this section.

11.1 Probability of Precipitation

MOS probability of precipitation (PoP) forecasts have been pro-
duced operationally by the REEP model for several years. This sta-
tistical product replaced the subjectively produced NMC product in
January of 1972. The developmental sample was divided into 2 sea-
sons - April through September, the summer season, and October
through March, the winter season. The event is defined to be 0.01
inches or more of measurable liquid equivalent precipitation in a
12 h period at a point, represented by a station rain gauge.

Separate equations were developed for the 12-24, 36-48, and 48-60 h
projections (i.e., lead times) and for each of the initial data times
of 0000 and 1200 GMT. Data for several stations within a region were
pooled, and one set of equations was developed that applied to all
stations within that region. Details of the evolution of the PoP
forecasting system are given by Lowry and Glahn (1976).

In terms of the P-score, the MOS PoP's improved upon the climato-
logical relative frequency (defined by month and by station) by about
48%, 33%, and 34% for the 12-24, 24-36, and 36-38 h projections,
respectively, for the 1979-80 winter. The corresponding 1979 summer
improvements were about 29%, 22%, and 19%. Using the MOS PoP's as
guidance, the local forecasters were able to improve upon them by
8.1%, 1.4%, and 2.3% for the three periods, respectively, during the
1979-80 winter.
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11.2 Precipitation Type

TDL's system for predicting the conditional probability of preci-
pitation type (PoPT), conditional on the occurrence of precipitation,
gives forecasts for three categories: frozen (snow or ice pellets),
freezing (freezing rain or drizzle), and Tiquid (rain or mixed types)
(Bocchieri, 1979). The PoPT system evolved from the conditional
probability of frozen precipitation (PoF) system (Glahn and
Bocchieri, 1975; Bocchieri and Glahn, 1976), which had been opera-
tional since November 1972. 1In PoF, explicit probability forecasts
of freezing precipitation were not available. In the PoPT system,
one logit equation was developed for each initial data time and each
projection. Although data from about 200 stations were used in the
development of each equation, the predictors were defined to be
departures from 50% values. As an example, consider the 850 mb tem-
perature as a predictor. For each station, the value that specifies
a 50% conditional probability of frozen precipitation was found
empirically. (This value was actually found by determining a one
predictor logit equation for each station.) Then, the 850 mb tem-
perature minus the unique 50% station value was used as a predictor
in the multipredictor logit equation.

Hiedke skill scores for the 1979-80 winter guidance forecasts
were .88, .86, and .84 for 18, 30, and 42 h forecasts, respectively.
These scores were computed only for those cases when the local PoP
forecasts were greater than or equal to 30%.

r

11.3 Surface Wind

MOS surface wind forecasts for stations throughout the conter-
minous United States have been produced since May 1973 (Carter,
1975). Three regression equations are determined for each station
for each projection - one for the U component, one for the V com-
ponent, and one for speed. A1l three equations have the same predic-
tors to ensure greater consistency between the three forecasts.
Forecasts of the U and V components are used to determine direction.
A separate equation is used for speed because speeds determined from
regression estimates of the U and V components are biased toward zero
(Glahn, 1970). .

Verification of the MOS forecasts for the 1973-74 through 1979-
80 winter shows a definite improving trend. Mean absolute errors in
direction for the 1979-80 winter were 26, 30, and 35 degrees for the
18, 30, and 42 h projections, respectively. Corresponding skill
scores for speed were .35, .34, and .26. The speed forecasts have
been inflated (Klein et al., 1959) since 1975 in order to make a
larger number of forecasts of strong winds.
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11.4 Surface Temperature

Statistical forecasts of maximum and minimum temperature have
been made and disseminated operationally by the National Weather
Service since 1965 -longer than any other weather element. Initially
the forecasts were made by the perfect prog technique (Klein and
Lewis, 1970), but the MOS approach was adopted in August 1973 after
considerable testing showed that MOS furnished better forecasts
(Annett et al., 1972; Klein and Hammons, 1975). The forecasts are
made from regression equations developed for individual stations, one
for each of the initial data times and for each projection. A con-
tinuing evaluation has shown that MOS improves on the perfect prog
forecasts by about .5°F in mean absolute error at 24 and 36 h projec-
tions. These statistical forecasts have shown a consistent improve-
ment since 1973. The mean absolute error for 24 h maximum tempera-
ture forecasts was 3.5°F for the 1979-80 winter period. The fore-
casters are able to improve on the guidance by a few tenths of a
degree Fahrenheit.

11.5 Extratropical Storm Surge

Storm surge is defined to be the piling up of water on the shore
due to meteorological conditions. TDL's statistical systems forecast
this surge at specific points on the Atlantic (Pore, 1976) and Great
Lakes (Richardson and Pore, 1969) coasts due to extratropical
storms. The perfect prog technique is used to develop regression
equations that relate the surge to concurrent values of sea level
pressure at grid points surrounding the ‘forecast points. Since a
very good physical basis exists for the dependence of surge on
pressure gradients, the forecasts are quite good, and their skill
depends mainly on the skill of the numerical model used to provide
the pressure forecasts (Pore, 1972). Surge forecasts became opera-
tional for Buffalo and Toledo on Lake Erie in October 1969 and for
Atlantic coastal stations in October 1971.

11.6 Thunderstorms and Severe Convective Weather

Medium-range (24 h projection) probability forecasts of thunder-
storms and severe convective weather have been operationally avail-
able since the spring of 1972 (Reap and Foster, 1979). In addition,
short-range (2-6 h projection) probability forecasts of the same
variables were implemented in the spring of 1974 (Charba, 1977,
1979). The medium-range forecasts are provided by REEP equations
developed by the MOS technique. The predictand is defined by radar
echoes within a specified time period and within an area approxi-
mately 75x75 km. These forecasts of severe convective weather are
conditional probabilities. That is, given a thunderstorm within the
defined area and time period, the forecast specifies the probability
of the occurrence of severe weather. It is interesting to note that
reliable forecasts of 30 to 40% can be made even though the climato-
logical relative frequency is only 6%.
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The short-range forecasts are also provided by REEP equations,
but the equations contain more predictors derived from recent obser-
vations (of surface atmospheric variables and radar echoes) than from
model output. Therefore, this technique is a blend of the classical
and MOS approaches. In addition, the severe storm probabilities as
well as the thunderstorm probabilities are unconditional. Reliable
probabilities approaching 100% are forecast for both predictands,
although for severe storms the climatological frequency for a 4 h
period is only about 2%.

12. FUTURE OF STATISTICAL WEATHER FORECASTING

Stochastic-dynamic prediction is a term used to describe models
that combine statistics and dynamics and produce output in probabil-
ity form. These models show some promise and may be the models of
the future. However, they require considerably more in the way of
computer resources than conventional numerical models, and much more
research is required before they can compete with present operational
models. Also, like present models, they do not produce forecasts of
many weather elements for which forecasts are required - ceiling
height, cloud amount, minimum temperature, etc. So it is Tikely that
MOS will be used for many years to translate numerical model fore-
casts into other needed products. The perfect prag technique may
find increased use for medium-range projections if numerical models
become accurate enough so that the perfect prog assumption is reason-
ably satisfied.

More efficient methods of processing large quantities of data,
better statistical models, and better use of present models will help
to improve and to extend the application of statistical forecasting
in the future.

REFERENCES

Allen, R. A., and E. M. Vernon, 1951: Objective weather forecasting.
Compendium of Meteorology (T. F. Malone, Ed.). Boston, Mass.,
American MeteoroTogical Society, pp. 796-801.

American Meteorological Society, 1959: Glossary of Meteorology.
Boston, Mass, AMS, 638 pp.

Annett, J. R., H. R. Glahn, and D. A. Lowry, 1972: The use of model
output statistics (MOS) to estimate daily maximum temperatures.
Silver Spring, Md., NOAA, National Weather Service, Technical
Memorandum NWS TDL-45, 14 pp.

Anderson, T. W., 1958: An Introduction to Multivariate Statistical
Analysis. New York, John Wiley and Sons, 374 pp.

304



Augulis, R. P., 1969: Precipitation probabilities in the Western
Region associated with winter 500 mb map types. Salt Lake City,
Utah, ESSA, National Weather Service, Technical Memorandum
WBTM WR 45-1, 91 pp.

Barnard, M., 1935: The secular variations of skull characters in
four series of Egyptian skulls. Annals of Eugenics, 6, 352-371.

Bartlett, M. S., 1934: The vector representation of a sample. Pro-
ceedings of the Cambridge Philosophical Society, 30, 327-340.

Bermowitz, R. J., 1975: An application of model output statistics to
forecasting quantitative precipitation. Monthly Weather Review,
103, 149-153.

Besson, L., 1905: Essai de prevision methodique du temps. Observa-
torie Municipal de Monsouris, Annals, 6, 473-495,

Bocchieri, J. R., 1979: A new operational system for forecasting
precipitation type. Monthly Weather Review, 107, 637-649.

Bocchieri, J. R., and H. R. Glahn, 1972: Use of model output statis-
tics for predicting ceiling height. Monthly Weather Review,
100, 869-879.

Bocchieri, J. R., and H. R. Glahn, 1976: Verification and further
development of an operational model for forecasting the proba-
bility of frozen precipitation. Monthly Weather Review, 104,
691-701.

Boehm, A. R., 1976: Transnormalized regression probability. Scott
Air Force Base, I11., USAF, Air Weather Service, Technical
Report 75-259, 52 pp.

Bowie, E. H., and R. H. Weightman, 1914: Types of storms of the
United States and their average movements. Monthly Weather
Review, Washington Supplement No. 1, 147 pp.

Brelsford, W. M., and R. H. Jones, 1967: Estimating probabilities.
Monthly Weather Review, 95, 570-576. :

Brier, G. W., 1940: The discriminant function. Washington, D.C.,
George Washington University, M.A. Thesis, 34 pp.

Brier, G. W., 1946: A study of quantitative precipitation fore-
casting in the TVA basin. Washington, D.C., U.S. Weather
Bureau, Research Paper No. 26, 40 pp. ,

Brier, G. W., 1950: Verification of forecasts expressed in terms of
probability. Monthly Weather Review, 79, 1-3.

305



Bryan, J. G., 1944: Special techniques in multiple regression.
Cambridge, Massachusetts Institute of Technology, unpublished
manuscript, 17 pp.

Bryan, J. G., 1950: A method for the exact determination of the
characteristic equation and latent vectors of a matrix with
applications to the discriminant function for more than two
groups. Cambridge, Mass., Harvard University, Ed. D. Disserta-
tion, 290 pp.

California Institute of Technology, 1943: Synoptic weather types of
- North America. Pasadena, Calif., Department of Meteorology,
Report, 237 pp.

Carter, G. M., 1975: Automated prediction of surface wind from
numerical model output. Monthly Weather Review, 103, 866-873.

Carter, G. M., and H. R. Glahn, 1976: Objective prediction of cloud
amount based on model output statistics. Monthly Weather
Review, 105, 1565-1572.

Charba, J. P., 1977: Operational system for predicting thunderstorms
two to six hours in advance. Silver Spring, Md., NOAA, National
Weather Service, Technical Memorandum NWS TDL-64, 24 pp.

Charba, J. P., 1979: Two to six hour severe local storm probabil-
- ities: an operational forecasting system. Monthly Weather
Review, 107, 268-282.

Dallavalle, J. P., J. S. Jensenius, Jr., and W. H. Klein, 1980:
Improved surface temperature guidance from the limited-area
fine mesh model. Preprints, Eighth Conference on Weather
Forecasting and Analysis (Denver). Boston, Mass., American
Meteorological Society, pp. 1-8.

Enger, I., J. A. Russo, Jr., and E. L. Sorenson, 1964: A statistical
approach to 2-7 hr prediction of ceiling and visibility, volumes
I and II. Hartford, Conn., Travelers Research Center, Inc.,
Contract No. CWB-10704, 48 pp. and 195 pp., respectively.

Feit, D. M., and N. A. Pore, 1978: Objective wind forecasting and
verification on the Great Lakes. Journal of Great Lakes
Research, 4, 10-18.

Fisher, R. A., 1936: The use of multiple measurements in taxonomic
‘ problems. Annals of Eugenics, 7, Part II, 179-188.

Fix, C., and J. L. Hodges, Jr., 1951: Discriminatory analysis, non-
parametric discrimination: consistency properties. Randolph
Field, USAF, School of Aviation Medicine, Report No. 4.

306



Freeman, M. H., 1961: A graphical method of objective forecasting
derived by statistical techniques. Quarterly Journal of the
Royal Meteorological Society, 87, 393-400.

Gilman, D. L., 1957: Empirical orthogonal functions applied to
thirty-day forecasting. Cambridge, Massachusetts Institute of
Technology, Department of Meteorology, Contract No. AF19 (604)-
1283, Scientific Report No. 1, 129 pp.

Glahn, H. R., 1962: An experiment in forecasting rainfall probabil-
ities by objective methods. Monthly Weather Review, 90, 59-67.

Glahn, H. R., 1965: Objective weather forecasting by statistical
methods. The Statistician, 15, 111-142.

Glahn, H. R., 1968: Canonical correlation and its relationship to
discriminant analysis and multiple regression. Jdournal of
Atmospheric Sciences, 25, 23-31.

6lahn, H. R., 1970: A method for predicting surface winds. Silver
Spring, Md., ESSA, National Weather Service, Technical Memoran-
dum WBTM TDL 29, 18 pp. :

Glahn, H. R., 1976: Progress in the automation of public weather
forecasts. Monthly Weather Review, 104, 1505-1512.

Glahn, H. R., and J. R. Bocchieri, 1975: Objective estimation of the.
conditional probability of frozen precipitation. Monthly
Weather Review, 103, 3-15.

Glahn, H. R., and D. A. Lowry, 1972: The use of model output statis-
tics (MOS) in objective weather forecasting. Journal of Applied

Meteorology, 11, 1203-1211.

Globokar, F. T., 1974: Computerized ceiling and visibility fore-
casts. Preprints, Fifth Conference on Weather Forecasting and
Analysis (St. Louis). Boston, Mass., American Meteorological
Society, pp. 228-233. ‘

Grimmer, M., 1963: The space-filtering of monthly surface tempera-
ture anomaly data in terms of pattern, using empirical orthog-
onal functions. Quarterly Journal of the Royal Meteorological
Society, 89, 395-408.

Gringorten, I. I., 1955: Methods of objective weather forecasting.
Advances in Geophysics, Vol. II. New York, Academic Press,
Inc., pp. 57-92.

Hotelling, H., 1935: The most predictable criterion. Journal of
Educational Psychology, 26, 139-142. .

307



Hete111ng, H., 1936: Relations between two sets of variates.
B1ometr1ka 28, 321-377.

Jones, R. H., 1968: A non11near model for estimating probabilities
of k events. Monthly Weather Review, 96, 383- 384.

Jorgensen, D. L., 1959: Prediction of hurricane mot1on with use of
orthogonal polynomials. Journal of Meteorology, 16, 21-29.

Klein, W. H., 1969: The computer's role in weather forecast1ng.
Weatherwise, 22, 195-218.

Klein, W. H., and G. A. Hammons, 1975: Maximum/minimum temperature
forecasts based on model output statistics. Monthly Weather
Review, 103, 796-806.

Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction
of five-day mean temperature during winter. Journal of Meteor-
ology, 16, 672-682.

Klein, W. H., and F. Lewis, 1970: Computer forecasts of maximum and
minimum temperatures. dournal of Applied Meteorology, 9, 350-
359, .

Lorenz, E. N., 1956: Empirical orthogonal functions and statistical
weather prediction. Cambridge, Massachusetts Institute of
Technology, Department of Meteorology, Scientific Report No. 1,
49 pp. ,

Lowry, D. A., and H. R, Glahn, 1976: An operational model for fore--
casting probability of precipitation - PEATMOS POP. Monthly
Weather Review, 104, 221-232. _

Lubin, A., and A. Summerfield, 1951: A square root method of
selecting a minimum set of variables in multiple regression:
I. The method. Psychometrika, 16, 271-284.

Lund, I. A., 1955: Estimating the probability of a future event from
dichotomously classified predictors. Bulletin of the American
Meteorological Society, 36, 325-328. .

Lund, I. A., 1963: Map-pattern classification by statistical
methods. Journal of Applied Meteorology, 2, 56-65.

¢ .

Miller, R. G., 1958: The screening procedure. In Studies in Sta-
tistical Weather Prediction (B. Shorr, £Ed.). Hartford, Conn.,
Travelers Research Center, Inc., Contract No. AF19 (604) 1590,
Final Report, pp. 86-95.

Miller, R. G., 1962: Statistical prediction by discriminant
analysis. Meteorological Monographs, 4, No. 25, 54 pp.

308




Miller, R. G., 1964: Regression estimation of event probabilities.
Hartford, Conn., Travelers Research Center, Contract Cwb-10704,
Technical Report No. 1, 153 pp.

Miller, R. G., Ed., 1977: Selected topics in statistical meteorol-
ogy. Scott Air Force Base, I11., USAF, Air Weather Service,
AWS-TR-77-273, 164 pp.

Mdok, C. P., 1948: An objective method of forecasting thunderstorms
for Washington, D.C., in May. Washington, D.C., U.S. Weather
Bureau, unpublished manuscript.

Murphy, A. H., 1974: A sample skill score for probability forecasts.
Monthly Weather Review, 102, 48-55.

Neter, J., and W. Wasserman, 1974: Applied Linear Statistical
Models. Homewood, I11., Richard D. Irwin, Inc., pp. 297-320.

Panofsky, H. A., and G. W. Brier, 1958: Some Applications of Sta-
tistics to Meteorology. University Park, Pennsylvania State
University, College of Mineral Industries, 224 pp.

Pore, N. A., 1972: Marine conditions and automated forecasts for the
Atlantic coastal storm of February 18-20, 1972. Monthly Weather
Review, 101, 363-370.

Pore, N. A., 1976: Automated forecasting of extrétropica] storm
surges. Proceedings, Fifteenth Coastal Engineering Conference
(Honolulu), Vol. 1. pp. 906-913.

Pore, N. A., and W. S. Richardson, 1969: Second interim report on
sea and swell forecasting. Silver Spring, Md., ESSA, National
Weather Service, Technical Memorandum WBTM TDL 17, 17 pp.

Rao, C. R., 1952: Advanced Statistical Methods in Biometric
Research. New York, John Wiley and Sons, 390 pp.

Reap, R.. M., and D. S. Foster, 1979: Automated 12-36 hour probabil-
ity forecasts of thunderstorms and severe local storms. Journal
of Applied Meteorology, 18, 1304-1315. :

Richardson, W. S., and N. A. Pore, 1969: A Lake Erie storm surge
forecasting technique. Siiver Spring, Md., ESSA, National
Weather Service, Technical Memorandum WBTM TDL 24, 23 pp.

Shuman, F. G., and J. B. Hovermale, 1968: An operational six-layer
primitive equation model. Journal of Applied Meteorology, 7,
525-547.

Suits, D. B., 1957: Use of dummy variables in regression equations.
Journal of the American Statistical Association, 52, 548-551.

309



Thompson, J. C., 1950: A numerical method for'forecasting rafnfaT]‘
in the Los Angeles area. Monthly Weather Review, 78, 113-124. -

U.S. Navy, 1963: A historical survey of statistical weather predic-
’ tion. Norfolk, Va., U.S. Navy Research Facility, NWRF 41-1263-
087, 25 pp. '

Veigas, K. W., R. G. Miller, and G. M, Howe, 1958: Probabilistic
"~ prediction of hurricane movement by synoptic climatology. In
Studies in Statistical Weather Prediction (B. Shorr, Ed.).
Hartford, Conn., Travelers Research Center, Inc., Contract No.
AF19 (604)-1590, Final Report, pp. 154-202.

Wadsworth, G. P., 1948: Short range and extended forecasting by
statistical methods. Washington, D.C., U.S. Air Force, Air
Weather Service, Technical Report No. 105-38, 202 pp.

Wherry, R. J., 1940: Occupational Counseling Techniques (W. H. Stead
and C. L. Changle, Eds.). New York, American Book Company, pp.
245-250.

White, R. M., D. S. Cooley, R. C. Derby, and F. A. Seaver, 1958: The
development of efficient linear statistical operators for the
prediction of sea level pressure. Journal of Meteorology, 15,
426-434,

Willett, H. C., 1951: The forecast problem. Compendium of Meteor-
ology (T. F. Malone, Ed.). Boston, Mass., American Meteorolog-
ical Society, pp. 731-746. .

Zurndorfer, E. A., and H. R. Glahn, 1977: Significance testing of
regression equations developed by screening regression. Pre-
prints, Fifth Conference on Probability and Statistics in the
Atmospheric Sciences (Las Vegas). Boston, Mass., American
Meteorological Society, pp. 95-100.

310





