BASIC PARAMETERS: TEMPERATURE

- The temperature of a gas is a function of the mean velocity of its molecules, thus describing its internal energy
- The temperature is measured either by
 - using a thermometer or - direct
 - remote detecting IR radiation with a sensor
- **Temperature scales** Celsius (°C). - most common, also SI-unit: - used in the USA: Fahrenheit (°F). - SI-unit, used in physics and technology: Kelvin (K) very cold winter in the Netherlands: $-17.8 \,^{\circ}\text{C} = 0 \,\text{F}$ freezing point of water: 0 °C = 32 F = 273.15 K body temperature of man: 37.8 °C = 100 F
 - boiling point of water:

100 °C = 212 F

VERTICAL STRUCTURE OF THE ATMOSPHERE: INVERSIONS

VERTICAL STRUCTURE OF THE ATMOSPHERE: INVERSIONS

How can the Air Temperature be changed ? How does this change the Vertical Temperature Profile ?

1. Radiative Heating / Cooling

Radiative inversion

Cooling due to outgoing IR-radiation (sky clear / few clouds conditions)

BASIC PARAMETERS: TEMPERATURE

Polarluft

Tropische Luft

How can the Air Temperature be changed ? How does this change the Vertical Temperature Profile ?

2. Cold / Warm Air Advection

Global Circulation

Jetstream

Warm Air Cold Air

Upslide inversion

Upslide motion of warm air (warmfront)

VERTICAL STRUCTURE OF THE ATMOSPHERE: INVERSIONS

3. Adiabatic Compression / Expansion

Subsidence inversion

Subsidence in a High (warming to compression of air like in air pump)

Atlantic Trade wind inversion

High pressure situation in winter lowexchange weather condition Smog below inversion

High pressure situation in general

In the mountains: Valley situation: overcast Summit situation: sky clear

STABILITY, INVERSIONS AND PLUMES

Looping

Unstable, vertical temperature gradient > 1°/100m

Coning

Stable, vertical temperature gradient < 1°/100m

Fanning Very stable, high inversion

Lofting Indifferent stratification, above inversion

Fumigation Unstable, below inversion

Trapping Between two inversions

TEMPERATURE: ICAO STANDARD ATMOSPHERE

THERMODYNAMIC DIAGRAM

Stüve ,Stuve' Diagram

Temperature at MSL:

TemperatureLapse rate :Dry-adiabaticLapse rate:Moist-adiabaticLapse-rate

0.65 °C / 100m 1.00 °C / 100m 0.65 °C / 100m

15 °C

- Shows the vertical change of Temperature / Hiumidity
- Shows vertical stability/instability (Shower/Thunderstorm)
- Shows cloud base / cloud tops
- Shows beginning of convection (Release Temperature)
- Shows inversions
- Shows Aviation Hazards

THERMODYNAMIC DIAGRAM

THERMODYNAMIC DIAGRAM

6

3

Shows vertical stability/instability (Shower/Thunderstorm) Shows cloud base / cloud tops Shows beginning of convection (Release Temperature) Shows inversions

Areas are proportional to the energy !

GLOBAL COVERAGE OF RADIOSONDES

ECMWF data coverage (all observations) - AIRCRAFT 2022110421 to 2022110503 Total number of obs = 680008

CHECKLIST THERMODYNAMIC DIAGRAM

Thermodynamic Diagram

- ✓ Different Types: Stüve SkewT-logP Tephigram
- ✓ Stüve: Othogonal x-y-Diagram
- ✓ SkewT-logP: Tilted to provide visually energy proportional to area
- ✓ Tephigram: dto
- ✓ Information about the vertical structure of the atmosphere
 - ✓ Stability, instability, Convection, PROB TS,
 - ✓ Aviation Hazards
 - ✓ Wind Profile, Jetstream, Vertical Windshear
 - ✓ ICING: -8D Curve
 - ✓ TURBULENCE:
 - ✓ Vertical Windshear produces turbulence
 - ✓ Vertical Stability decreases / damps turbulence
 - ✓ Ratio between both: Richardson Number Ri
 - ✓ Ri < 1: RISK OF TURB
 - ✓ Ri > 1: NO RISK OF TURB

